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Abstract

We present a simulation model suited to study efficiency, timing and pulse-height spectra of Resistive Plate

Chambers. After discussing the details of primary ionisation, avalanche multiplication, signal induction and frontend

electronics, we apply the model to timing RPCs with time resolution down to 50 ps and trigger RPCs with time

resolution of about 1 ns:
r 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

Resistive Plate Chambers, pioneered during the
1980s [1,2] and developed into Multi Gap Resistive
Plate Chambers during the 1990s [3], have become
an integral part of present HEP experiments. A
detailed study of signal induction and signal
propagation in RPCs can be found in Refs. [4,5].
In this report we focus on the detector physics of
RPCs, especially the primary ionisation and
avalanche statistics. We present analytical formu-
lae for average signals, charges, time resolution
and efficiency to study the ‘order of magnitude’
behaviour of RPCs. We describe a simple Monte
Carlo procedure that enables us to simulate
accurately the detector physics processes. Effects
of high fields, like the change in avalanche

statistics and space-charge effects, are also dis-
cussed and analysed.
Primary ionisation in gases and avalanche

multiplication in a homogeneous electric field were
extensively studied already a long time ago.
Comprehensive summaries of these topics are
given, e.g. in Ref. [6], by R.ather [7], Sauli [8],
and, Blum and Rolandi [9]. References to specific
publications will be given in the corresponding
sections.
Simulation of RPCs was already reported by

several authors [10–13]. The motivation of our
work lies in the fact that there are still disagree-
ments about the explanation for several aspects of
RPC performance [14]. The high efficiency of
single gap RPCs would require a very large
ionisation density of the used gases, which
according to some authors contradicts experimen-
tal values [12,13]. Even in case the large ionisation
density was correct the gas gain has to be
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extremely large in order to arrive at the observed
RPC efficiency, which raises other questions: a
very ‘strong’ space-charge effect is required to
explain the observed small charges around 1 pC
[15], and doubts have been raised whether an
avalanche can progress under such extreme con-
ditions without developing into a forward strea-
mer [13]. To overcome these difficulties, ‘more
complex schemes than believed’ like ‘electron
extractions from the cathode, or photoionisation
in the gas’ were quoted to be very likely [9].

We prefer a scenario where no unusual effects
have to be considered, in order to explain the
behaviour of RPCs, mainly because the careful
simulation of the space-charge effect showed that
the required space-charge suppression is indeed
possible without streamer effects [16]. In our
opinion the detector physics of RPCs does not
deviate from the well-known processes that will be
discussed throughout this paper.
Experimental values for properties of the used

RPC gases are scarce. We therefore use values
predicted by the widely used programs [17–19]
and perform a RPC simulation based entirely
on ‘standard’ detector physics and simulated
values for gas properties, without any additional
assumptions.
To compare the simulation to measurements we

show the results for two different kinds of devices.
First we will investigate timing RPCs with a
300 mm gap, similar to the one developed by
Fonte et al. [20–22] with time resolutions down to
50 ps (Fig. 1). Similar geometries with 250 mm gap
are described in Ref. [23]. Then we will study 2 mm
gap RPCs similar to the ones in ATLAS [24,25]
with a time resolution of E1 ns; used for trigger-
ing the experiment (Fig. 2). Both RPC types
operate with a gas mixture of C2F4H2=
i-C4H10=SF6 [26].
The timing RPCs by Fonte et al. use gas gaps of

300 mm and resistive glass plates with a volume
resistivity of about 2� 1012 Ocm: The gas is
C2F4H2=i-C4H10=SF6 85/5/10 at an operating
voltage of 6ð3Þ kV for the double(single) gap
RPCs, resulting in an electric field of about
100 kV=cm in the gas gaps. The ATLAS RPCs
use 2 mm Bakelite with a volume resistivity of
9� 109 Ocm: The 2 mm gas gap is filled with
C2F4H2=i-C4H10=SF6 96.7/3/0.3. The working
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point is around 10 kV giving an electric field of
50 kV=cm in the gas gap.

2. Primary ionisation

The charge deposit is characterised by the
average number of clusters per unit length and
the probability distribution for the number of
electrons per cluster [9]. The numbers are calcu-
lated using Heed [17]. The average number of
clusters/mm versus ðg� 1Þ of the particle is shown
in Fig. 3(a). For the RPC gas we find an average of
7.5 clusters/mm for a minimum ionising particle.
The predicted numbers of isobutane and methane
are shown as a reference since measurements for
the gases are available [9,27]. The prediction from
Heed of 8:85 cl=mm (isobutane) and 2:64 cl=mm
(methane) for minimum ionising particles matches
these specific experimental results very well. It has
to be mentioned that other experimental values
quoted in literature are considerably lower than
these, e.g. [8] 4:6 cl=mm (isobutane) and 1:6 cl=mm
(methane). We prefer the high values since they
were obtained with a very careful setup [27], they
are well reproduced by Heed [17] and they resolve
the RPC puzzles mentioned in the introduction.
For the RPC gas and a 7 GeV pion, we find on

average 9:5 clusters=mm; so the average distance
between clusters is l ¼ 105 mm: The cluster size
distribution for three gases is shown in Fig. 3(b).
For the simulation of wire chambers [28], omitting
the long tail in the cluster size distribution can
give results that are in sharp disagreement
with observation. One therefore has to carefully
set the cut in the distribution according to de-
tector under consideration. E.g. for the
C2F4H2=i-C4H10=SF6 96.7/3/0.3 gas, the probabil-
ity for a cluster to contain more than 30 electrons
is 1%. Therefore, the probability that at least one
of the E20 primary clusters in a 2 mm RPC
contains more than 30 electrons is still 20%. To be
‘safe’ from any error due to this cut, and because it
does not require much CPU time, the cut was set
to 500 electrons in the simulations presented
throughout this paper. The distance between the
clusters is exponentially distributed, so the prob-
ability to find the first cluster between position x

and x þ dx is [9]

PðxÞ ¼
1

l
e�x=l ð1Þ

The probability for the nth cluster to be between
position x and x þ dx; independent of the position
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Fig. 3. (a) Average number of clusters/mm for different gases

at 296:15 K and 1013 mbar as predicted by Heed [17]. The solid
lines show measurements for methane and isobutane from Ref.

[27]. (b) Cluster size distribution for a 7 GeV pion (isobutane

and 10% SF6 mixture) and 120 GeV muon (0.3% SF6 mixture)

as simulated by Heed. Cutting at 500 electrons the average
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of all the others, is given by [8]

Pcluðn;xÞ ¼
Z x

0

Z xn�1

0

y

Z x2

0

Pðx1ÞPðx2 � x1Þ

� Pðx � xn�1Þ dx1dx2ydxn�1

¼
xn�1

ðn � 1Þ!ln e
�x=l ðG distributionÞ ð2Þ

with an average distance from the gas gap edge of

%x ¼ nl: For the simulation we simply put the
primary clusters with relative distances according
to Eq. (1) and the number of electrons for each
cluster from the cluster size distribution in Fig. 3b.

3. Secondary particles

Secondary particles created by the incident
particle in the RPC material potentially have a
very big impact on the RPC performance since
these particles, mostly delta electrons, create many
ionisation electrons at the ‘beginning’ of the gas
gap. For the RPCs in Fig. 1(a) and (b), the particle
enters the gas gap through an aluminium plate. A
calculation with Fluka [29,30] for a 7 GeV pion
crossing a 3 mm aluminium plate shows that the
probability that the pion is accompanied by at least
one charged particle is only 4.92%. Therefore, the
secondaries should not have a serious influence on
the charge spectrum, efficiency and timing.

4. Avalanche multiplication

Each electron will start an avalanche which will
grow until it hits the resistive plate or metal
electrode. Avalanche multiplication for electrone-
gative gases at high fields is described in detail in
Ref. [31]. In case the probability that an electron
multiplies is independent of the previous position
of multiplication, the avalanche development is
characterised by the Townsend coefficient a and
attachment coefficient Z: Fig. 4 shows these para-
meters as calculated with Imonte [19]. For the
trigger RPCs with E ¼ 50 kV=cm we expect an
effective Townsend coefficient of around 10/mm
while for the timing RPCs with E ¼ 100 kV=cm
we expect a value around 113/mm. If the

avalanche contains n electrons at position x the
probability that it contains n þ 1 at x þ dx is given
by na dx: Following the same arguments, the
probability that for an avalanche of size n; one
electron gets attached (forming a negative ion)
over distance dx; is nZ dx: For the average number
of electrons %n and positive ions %p we therefore have
the relations [7,31]

d %n

dx
¼ ða� ZÞ %n;

d %p

dx
¼ a %n ð3Þ
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Fig. 4. Townsend and attachment coefficient as calculated by

Imonte [19] for T ¼ 296:15 K and P ¼ 1013 mbar for the
timing RPC (a) and trigger RPC (b) gas.
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with %nð0Þ ¼ 1 and %pð0Þ ¼ 0 giving the solution
[7,31]

%nðxÞ ¼ eða�ZÞx; %pðxÞ ¼
a

a� Z
ðeða�ZÞx � 1Þ: ð4Þ

The average number of negative ions is then %p � %n:
To derive the statistical fluctuation of the ava-
lanche, we proceed as shown in Ref. [31]. The
probability Pðn; xÞ for an avalanche started with a
single electron to contain n electrons after distance
x is defined by

Pðn;x þ dxÞ

¼ Pðn � 1;xÞ ðn � 1Þa dx ð1� ðn � 1ÞZ dxÞ

þ Pðn; xÞ ð1� na dxÞ ð1� nZ dxÞ

þ Pðn; xÞ na dx nZ dx

þ Pðn þ 1;xÞ ð1� ðn þ 1Þa dxÞ ðn þ 1ÞZ dx:

ð5Þ

The four lines represent the four possibilities to
find n electrons at position x þ dx: The first line
gives the probability that there are n � 1 electrons
at x; exactly one of them duplicates and no
electron is attached. The second line gives the
probability that there are n electrons at x; no
electron duplicates and no electron is attached.
The third line gives the probability that from n

electrons, one multiplies and one gets attached
and finally the fourth line gives the probability
that from n þ 1 electrons one gets attached and
no electron is multiplied. Evaluating the expres-
sion and omitting the higher order terms of dx

we find

dPðn;xÞ
dx

¼ � Pðn;xÞnðaþ ZÞ þ Pðn � 1; xÞðn � 1Þa

þ Pðn þ 1; xÞðn þ 1ÞZ ð6Þ

with the general solution [31]

Pðn;xÞ ¼
k %nðxÞ�1
%nðxÞ�k

; n ¼ 0

%nðxÞð 1�k
%nðxÞ�k

Þ2ð %nðxÞ�1
%nðxÞ�k

Þn�1; n > 0

8<
: ð7Þ

where

%nðxÞ ¼ eða�ZÞx; k ¼
Z
a
: ð8Þ

The variance s2ðxÞ of the distribution is given by

s2ðxÞ ¼
1þ k

1� k

� �
%nðxÞð %nðxÞ � 1Þ: ð9Þ

We see that the average electron number depends
on the so-called effective Townsend coefficient
aeff ¼ a� Z; the variance and the distribution itself
however depends also on k ¼ Z=a explicitly. For
illustration, Fig. 5 shows the above distribution for
the same effective Townsend coefficient but
different a and Z: For simulation of avalanche
fluctuations, the Furry law and the Polya distribu-
tion [32] are widely used. Both of them do not
contain the effect of attachment which has a
significant influence on the charge spectrum as
seen from Fig. 5. They are therefore not applicable
for the avalanche fluctuations in RPC gases which
show strong attachment. For a distance x where %n

is sufficiently large, we can approximate the above
formula and find [31]

Pðn; xÞ ¼
k; n ¼ 0
ð1�kÞ2

%nðxÞ exp½�ð1� kÞ n
%nðxÞ�; n > 0:

(
ð10Þ

In the case that a ¼ Z or 0 the distribution
from Eq. (7) becomes undefined and we have to
use different expressions. These cases are impor-
tant when the space-charge effects are taken into
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account [16]. In case a ¼ Z the probabilities are

Pðn;xÞ ¼
ax
1þax

; n ¼ 0
1

ð1þaxÞ2
ð ax
1þax

Þn�1; n > 0

(
ð11Þ

and the variance becomes

s2ðxÞ ¼ 2ax: ð12Þ

In case a ¼ 0 the probabilities are

Pðn;xÞ ¼
1� e�Zx; n ¼ 0

e�Zx; n ¼ 1

(
ð13Þ

and the probability to find n > 1 electrons is zero.
The variance is

s2ðxÞ ¼ e�2ZxðeZx � 1Þ: ð14Þ

To generate a random number according to
Eq. (7) one draws a uniform random number s

from the interval ð0; 1Þ and calculates

n

0; sok %nðxÞ�1
%nðxÞ�k

1þ Trunc½ 1

lnð1� 1�k
%nðxÞ�k

Þ
lnðð %nðxÞ�kÞð1�sÞ

%nðxÞð1�kÞ Þ�; s > k %nðxÞ�1
%nðxÞ�k

8><
>:

ð15Þ

where ‘Trunc’ means truncation of the decimals. In
case %nðxÞ is very large the numerical evaluation of
the first factor can become problematic and it is
better to use the series expansion for lnð1� xÞ ¼
�ðx þ 1

2
x2 þ 1

3
x3 þ?Þ:

To generate a random number according to
Eq. (11) one draws a uniform random number s

from the interval ð0; 1Þ and calculates

n
0; so ax

1þax

1þ Trunc½ 1

lnð ax
1þax

Þ
lnðð1� sÞð1þ axÞÞ�; s > ax

1þax
:

8<
:

ð16Þ

To generate a random number according to
Eq. (13) one calculates

n ¼
0; s > e�Zx

1; soe�Zx:

(
ð17Þ

If we want to calculate the induced signal, we have
to simulate the avalanche development instead of
using the probability distribution for the final
avalanche charge. Let us first follow the avalanche
development for a single initial electron starting at

one edge of the gas gap. We divide the gap into N

steps of Dx: The average multiplication %nðDxÞ for a
single electron over this distance is given by
eða�ZÞDx: Starting with one electron at x ¼ 0 we
find n1 electrons at x ¼ Dx where n1 is from
Eqs. (15)–(17). Each of these electrons will again
multiply the same way. To find the number n2 of
electrons at x ¼ 2Dx; we loop over the n1
electrons, draw a number from Eqs. (15)–(17) for
each electron and sum them. This procedure can
be repeated through the full gap, but it is very time
consuming. If the number of electrons ni at a given
distance of iDx is sufficiently large, we can use the
central limit theorem and calculate the number of
electrons niþ1 at distance ði þ 1ÞDx by drawing a
random number from a Gaussian with mean m and
sigma sm of

m ¼ ni %nðDxÞ; sm ¼
ffiffiffiffi
ni

p
sðDxÞ ð18Þ

where sðxÞ is from Eqs. (9), (12) and (14). This
makes the simulation procedure very fast. Fig. 6
shows examples of individual avalanches starting
from a single electron. The very beginning of the
avalanche decides on the final avalanche size. Once
the number of electrons has reached a certain size
the avalanche grows smoothly like eða�ZÞx:
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5. Induced signals

The movement of the electrons in the electric
field finally induces a current signal on the RPC
electrodes. The negative and positive ions induce a
signal which is much smaller due to their slow drift
velocity which we will neglect in the following.
Fig. 7 shows the drift velocities for different gases
as predicted by Magboltz [18] together with some
measurements. The current signal induced on an
electrode is given by [35,7]

iðtÞ ¼
Ew 	 v

Vw
e0NðtÞ ð19Þ

where e0 is the electron charge, Ew (weighting field)
is the electric field in the gas gap if we put the
electrode to potential Vw and ground all other
electrodes, v is the electron drift velocity and NðtÞ
is the number of electrons present at time t which
we calculate by simulating the avalanches of the
individual primary electrons. The weighting fields
Ew=Vw for the geometries in Figs. 1 and 2
(considering the electrodes to be large compared
to the RPC thickness) can be calculated the
following way: the electric fields Ei in a capacitor
with n layers of thickness di and permittivity ei can

be calculated by the conditionsXn

i¼1

Eidi ¼ Vw; eiEi ¼ ejEj

for neighbouring layers: ð20Þ

For geometries (a), (b), (c) of Fig. 1 we therefore
have

Ew

Vw
¼

er

b þ der

ð21aÞ

Ew

Vw
¼

er

b þ 2der

ð21bÞ

Ew

Vw
¼

er

2b þ der

ð21cÞ

where er is the Bakelite (glass) permittivity, b the
Bakelite (glass) thickness and d the gas gap. To get
an idea about the signals we first assume a single
primary electron somewhere in the gas gap. Using
the result that after some initial fluctuations NðtÞ
grows like a smooth exponential (Fig. 6) and that
the charge after a fixed distance (time) is exponen-
tially distributed (Eq. (10)), we can assume an
RPC signal distribution of

iðtÞ ¼ Aeða�ZÞvt; PðAÞ ¼
1

Aav
e�A=Aav ð22Þ

where PðAÞ is the probability to find the amplitude
A in an event. This signal growth distribution is
independent of the position of the primary
electron in the gas gap. The position only
determines when the avalanche hits the electrode,
i.e. it determines when the signal is stopped.
If the gas gap is large compared to the average

distance between clusters, the signal is formed by
many clusters. To get an idea of the average pulse
height and signal shape, we assume N0 ¼ d=l
clusters distributed evenly in the gas gap, each
containing nav electrons (d is the gap thickness and
l is the average distance between clusters). The
signal is then given by

IðtÞ ¼
Ew

Vw
e0vNðtÞ;

NðtÞ ¼
XN0
n¼1

nave
ða�ZÞvtY

d

v
1�

n

N0

� �
� t

� 

ð23Þ
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where YðxÞ is the step function. The enveloping
function of this signal is

IenvðtÞ ¼
Ew

Vw
e0vNenvðtÞ;

NenvðtÞ ¼N0nav 1�
tv

d

� �
eða�ZÞvt

�Y
d

v
� t

� �
: ð24Þ

Both of these functions are shown in Fig. 8. These
formulas only match to reality if saturation effects
can be neglected.
To discuss the performance numbers in the next

sections we use the parameters from the previous
figures at typical operating voltages:

Timing RPC : E ¼ 100 kV=cm;

a ¼ 123=mm; Z ¼ 10:5=mm

v ¼ 210 mm=ns; d ¼ 0:3 mm; er ¼ 8

l ¼ 0:1 mm; nav ¼ 2:6; b ¼ 2 mm:

ð25Þ

Trigger RPC : E ¼ 50 kV=cm;

a ¼ 13:3=mm; Z ¼ 3:5=mm

v ¼ 140 mm=ns; d ¼ 2 mm; er ¼ 10

l ¼ 0:1 mm; nav ¼ 2:8; b ¼ 2 mm

ð26Þ

where a is the Townsend coefficient, Z the
attachment coefficient, d the gas gap, er the
Bakelite (glass) permittivity, l the average distance
between clusters, nav the average number of
electrons per cluster, b the Bakelite (glass) thick-
ness and v the electron drift velocity.

6. Average signals and charges

In the following we will derive analytic expres-
sions for the average signal and charge produced
by the individual clusters as well as the total charge
deposit. Comparing these formulas to measure-
ments will show the importance of saturation
effects in RPCs. We will frequently use the integralZ R

0

xne�x dx ¼ n!ð1� K ½R; n þ 1�Þ

with K ½R; n� ¼ e�R
Xn�1
k¼0

Rk

k!
: ð27Þ

6.1. Individual clusters

Using Pclu from Eq. (2), the average number of
electrons %N�

n produced by the nth cluster is given
by

%N�
n ¼

Z d

0

Pcluðn;xÞnav %nðd � xÞ dx

¼
nave

ða�ZÞd

½1þ ða� ZÞl�n
1� K d a� Zþ

1

l

� �
; n

� 
� �

E
nave

ða�ZÞd

½1þ ða� ZÞl�n
for eða�ZÞd

b1: ð28Þ

The average number of positive ions %Nþ
n produced

by the nth cluster is

%Nþ
n ¼

Z d

0

Pcluðn;xÞnav %pðd � xÞ dx

¼
nava
a� Z

eða�ZÞd

½1þ ða� ZÞl�n

�

� 1� K d a� Zþ
1

l

� �
; n

� 
� �
� 1� K

d

l
; n

� 
� �


E
anave

ða�ZÞd

ða� ZÞ½1þ ða� ZÞl�n
for eða�ZÞd

b1: ð29Þ
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Fig. 8. Average signal from Eq. (23) with the enveloping

function from Eq. (24) for the Trigger RPC geometry with

parameters from Eq. (26).
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The average signal from a single electron starting
at position x in the RPC gap is

iðt; xÞ ¼
Ew

Vw
e0ve

ða�ZÞvtY
d � x

v
� t

� �
ð30Þ

and the corresponding induced charge is

Qindðd � xÞ ¼
Z

N

0

iðt;xÞ dt

¼
Ewe0

Vwða� ZÞ
ðeða�ZÞðd�xÞ � 1Þ

¼
Ew

Vw

1

a
%pðd � xÞ: ð31Þ

Therefore the average charge %Qindn induced by the
nth cluster is

%Qindn ¼
Z d

0

Pcluðn;xÞnavQindn ðd � xÞ dx

¼
Ewe0

Vw

1

a
%Nþ

n ð32Þ

and hence the ratio of induced charge and ion
charge, which is equal to the total avalanche
charge, measures the Townsend coefficient inde-
pendent of attachment [36]:

%Qindn

%Qavalanche
n

¼
Ew

Vw

1

a
: ð33Þ

The average signal due to the nth cluster is given
by

%inðtÞ ¼
Z d

0

Pcluðn;xÞnaviðt;xÞ dx

¼
Ew

Vw
e0vnave

ða�ZÞt

� 1� K
1

l
ðd � vtÞ; n

� 
� �
Y

d

v
� t

� �
: ð34Þ

The average signals of the first four clusters for the
parameters from Eq. (26) are shown in Fig. 9.

6.2. All clusters

In this section we calculate the average total
charge and signal. The distance between the

individual clusters is exponentially distributed

PðDxÞ ¼
1

l
e�Dx=l: ð35Þ

Therefore the probability to have the first
cluster at position x1; the second one at position
x2 > x1; y, the nth cluster at position xn > xn�1

and no other cluster in the gas gap xnþ1 > d is
given byZ

N

d

Pðx1ÞPðx2 � x1Þ?Pðxnþ1 � xnÞdxnþ1

¼
1

lne
�d=l: ð36Þ

The probability to have exactly n electrons in the
gas gap, independent of position, is given by the
integral over all positions

Z d

0

Z xn

0

Z xn�1

0

?
Z x2

0

1

ln e
�d=ldx1dx2ydxn

¼
1

n!

d

l

� �n

e�d=l ð37Þ

which is the expected Poisson distribution [9].
The average number of avalanche electrons %N� is
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Fig. 9. Average signals from the first four clusters for the

parameters from Eq. (26).
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given by

%N� ¼
XN
n¼1

Z d

0

Z xn

0

Z xn�1

0

y

Z x2

0

1

lne
�d=l

� nav½ %nðd � x1Þ þ %nðd � x2Þ

þ?þ %nðd � xnÞ�dx1dx2ydxn

¼
XN
n¼1

navðeða�ZÞd � 1Þdn�1e�d=l

ðn � 1Þ!ða� ZÞln

¼
nav

lða� ZÞ
ðeða�ZÞd � 1Þ

E
nave

ða�ZÞd

lða� ZÞ
for eða�ZÞd

b1: ð38Þ

The average number of ions %Nþ is derived by
replacing %nðd � xnÞ by %pðd � xnÞ in the above
expression and we find

%Nþ ¼
nava
a� Z

1

lða� ZÞ
eða�ZÞd � 1
� �

�
d

l

� 


E
nava

lða� ZÞ2
eða�ZÞd for eða�ZÞd

b1: ð39Þ

The average induced charge %Qind is as before
proportional to the number of ions

%Qind ¼
Ew

Vw

e0

a
NþE

Ew

Vw

nave0

lða� ZÞ2
eða�ZÞd

for eða�ZÞd
b1: ð40Þ

The average RPC Signal is given by

%iðtÞ ¼
XN
n¼1

Z d

0

Z xn

0

Z xn�1

0

y

Z x2

0

1

ln e
�d=l½iðt;x1Þ

þ iðt; x2Þ þ?þ iðt;xnÞ� dx1 dx2ydxn
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XN
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Z d

0

Z xn
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0

y
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nave0ve

ða�ZÞt
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Y
d � xn

v
� t

� � !
dx1dx2ydxn

¼
XN
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Ew

Vw
nave0ve

ða�ZÞt1

l
e�d=lðd � vtÞ

�Y
d

v
� t

� �
d

l

� �n�1
1

ðn � 1Þ!

¼
Ew

Vw
nave0ve

ða�ZÞt1

l
ðd � vtÞY

d

v
� t

� �
: ð41Þ

We find that the average RPC signal is equal to the
enveloping function from Eq. (24).

7. Intrinsic timing

In this section we want to find an order of
magnitude formula for the intrinsic timing of a
single gap RPC. Details on this can be found in
Ref. [37]. For sufficiently low thresholds (and fast
amplifiers), the timing is not affected by saturation
effects. We assume a single primary electron
somewhere in the RPC. The RPC signal and
amplitude fluctuation is then given by Eq. (22).
Setting a threshold of Athr to the RPC signal we
find a threshold crossing time of

iðtÞ ¼Aeða�ZÞvt ¼ Athr-

tðAÞ ¼
1

ða� ZÞv
ln

Athr

A
: ð42Þ

The amplitude A is exponentially distributed
around some average amplitude Aav: Therefore,
the time distribution PðtÞ for a given threshold is
given by

PðtÞ ¼
Z

N

0

1

Aav
e
� A

Aavd t �
1

ða� ZÞv
ln

Athr

A

� �� �
dA

¼
ða� ZÞvAthr

Aav
exp �

ða� ZÞvt

Aav
�

Athr

Aav
e�ða�ZÞvt

� �
ð43Þ

where dðxÞ is the Dirac delta function. This
distribution has the curious property that a
different threshold merely corresponds to a time
shift, i.e. the shape of the distribution is indepen-
dent of threshold and average amplitude. Time
shifting the maximum to zero, the distribution
reads

PðtÞ ¼ ða� ZÞvF ðða� ZÞvtÞ;

F ðxÞ ¼ expð�x � expð�xÞÞ: ð44Þ

The function is shown in Fig. 10. The variance s of
the function F ðxÞ is given by

sðF Þ ¼ 1:28 ð45Þ
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so the RPC time resolution is given by

st ¼
1:28

ða� ZÞv
ð46Þ

where a� Z is the effective Townsend coefficient
and v is the electron drift velocity. We therefore
expect that the intrinsic time resolution depends
only on the drift velocity and the effective Town-
send coefficient and not on the threshold. This is

reproduced by the detailed Monte Carlo simula-
tion (Fig. 10(b)) and also observed in measure-
ments [21].
For the timing RPC with parameters from

Eq. (25) stE50 ps and for Trigger RPCs with
parameters from Eq. (26) we find stE1 ns: These
numbers are quite close to the ones quoted in Refs.
[38,40]. Intrinsic time resolution of RPCs is there-
fore dominated by the effective Townsend coeffi-
cient and the drift velocity and is to first-order
independent of the primary ionisation parameters.

8. Efficiency

In this section we want to estimate the
efficiencies that we expect with the detector physics
model and numbers given before. In a simplified
view we expect the RPC to be efficient if the first
cluster creates an avalanche that exceeds the
threshold or the first cluster is attached and the
second cluster exceeds the threshold or the first
and second cluster are attached and the third
exceeds the threshold, etc. In addition we assume
that the clusters contain only one electron and we
neglect avalanche fluctuations [12], i.e. a primary
electron at position x in the gas gap will induce a
charge of

QindðxÞ ¼
Ew

Vw

e0

a� Z
eða�ZÞðd�xÞ � 1 ð47Þ

on the readout electrode. Setting a threshold of Qt;
the condition for an efficient event is QindðxÞ > Qt
meaning xox0 with [12]

x0 ¼ d �
1

a� Z
ln 1þ

Vw

Ew

a� Z
e0

Qt

� 

: ð48Þ

The probability that the first cluster is not attached
and above threshold is

P1 ¼ 1�
Z
a

� �Z x0

0

1

l
e�x=ldx: ð49Þ

The probability that the first cluster is attached
and the second one is not attached and above
threshold is

P2 ¼
Z x0

0

Z x2

0

Z
a
1

l
e�x1=l 1�

Z
a

� �1
l
e�ðx2�x1Þ=l dx1dx2:

ð50Þ
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Fig. 10. (a) The function F ðxÞ from Eq. (45) giving the RPC

approximate time resolution. The time resolution scales with

1=ða� ZÞv which just ‘stretches the abscissa’. (b) Full Monte
Carlo simulation of the time resolution versus threshold for the

300 mm RPC at 3 kV with tp ¼ 0:5 ns and ENC 1 fC: The solid
line shows Eq. (47).
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Continuing the series and evaluating the integrals,
the probability for the nth cluster to be above
threshold and the n � 1 before to be attached is

Pn ¼
Z
a

� �n�1
1�

Z
a

� �
1� K

x0

l
; n

h i� �
ð51Þ

where K ½x; n� is from Eq. (27). The efficiency e is
then given by

e ¼
XN
n¼1

Pn ¼ 1� e�ð1�Z=aÞd=l 1þ
Vw

Ew

a� Z
e0

Qt

� 
1=al
:

ð52Þ

The efficiency depends explicitly on a and Z and
not just on the effective Townsend coefficient. For
a-N the inefficiency is exp½�d=l� which is the
probability that there is no primary cluster in
the gas gap. This formula together with a full
Monte Carlo simulation is shown in Fig. 11. For
the 2 mm RPC, the formula underestimates the
efficiency since it does not take into account
the possibilities that individual avalanches stay
below the threshold but that the sum crosses the
threshold. However, the order of magnitude of the
efficiency can be estimated quite well.

9. Space-charge effects

Inserting the detector physics parameters from
Eqs. (25) and (26) in Eqs. (39) and (40) we find
average charges that are significantly larger than
the measured ones (measurements in brackets)

Timing RPC : QtotE1:8� 107 ð5Þ pC;

QindE1:9� 105 ð0:5Þ pC

Trigger RPC : QtotE200 ð40Þ pC;

QindE6 ð2Þ pC: ð53Þ

The discrepancy for the total charge value is a
factor E5 for the trigger RPCs and E3:4� 106

for the timing RPCs! Using Eq. (38) we find the
average number of avalanche electrons for the
timing RPC to be E1014: Assuming a single
electron avalanche in the timing RPC, the electron
cloud will assume a Gaussian shape with sE20 mm
after 300 mm due to longitudinal and transverse
diffusion. Assuming a sphere of charge with 106

electrons and radius of 20 mm; the field on the
surface is 36 kV=cm; so for numbers of 106–107

electrons, the fields in the avalanche become
comparable to the applied field. Therefore, space-
charge effects must play a significant role in this
detector [15]. It is shown in Ref. [16] that taking
into account the field of the avalanche correctly
explains the observed charges. In this report we
take the effect into account in a crude way by
allowing the avalanche growth only up to a certain
size as proposed in Refs. [26,12].
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Fig. 11. Efficiency from Eq. (53) together with the full Monte

Carlo for a (a) 0:3 mm RPC and (b) 2 mm RPC.
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10. Avalanche statistics at high fields

The assumption that the ionisation probability
is independent of the history of previous collisions
will not hold above a certain electric field value.
Considering a Townsend coefficient of a ¼
123=mm at the electric field E ¼ 100 kV=cm; the
average distance between ionising collisions 1=a is
8:13 mm: Assuming an ionisation energy of Ui ¼
25 eV an electron has to travel a distance of x0 ¼
Ui=E ¼ 2:5 mm after a collision to again reach this
energy, so within 2:5 mm after each collision the
ionisation probability is zero. Since this number is
comparable to 1=a the condition that the ionisa-
tion probability is independent of the previous
collisions does not hold any more and the
avalanche fluctuations will be altered. Instead
the shape of the distribution depends on the
parameter [7]

r ¼
1

a
E

Ui
: ð54Þ

At low fields ðr51Þ the avalanches started by a
single electron (and multiplying over a fixed
distance) result in the distribution described in
the previous chapter. At high fields ðrE1Þ the
distributions show a pronounced maximum for
which many different interpretations were given
[41]. A popular way to describe this phenomenon
is the Polya distribution which derived from the
probability p to find n þ 1 electrons in x þ dx as

p ¼ nl b �
1� b

n

� �
dx: ð55Þ

We see that this distribution assumes that the
probability to create an electron depends on the
current size of the avalanche. This however misses
a clear physical interpretation and describes some
kind of space-charge effect which we include in the
way mentioned above. Therefore the only justifi-
cation for this distribution is that it can parame-
trise the measured curves in a nice way.
For this study we will, as in Section 4, follow a

model by Legler [31] which assumes the physical
picture mentioned above. If x is the distance
travelled by an electron from the last ionising
collision the ionisation probability will be given by
aðxÞ dx where aðxÞ is zero for xox0 and will

increase for x > x0: In the same manner the
attachment coefficient will depend on x and we
replace the constant attachment coefficient Z by
eðxÞ: Starting with a single electron at x ¼ 0; the
average number of avalanche electrons at a
distance x that had the last ionising collision at a
distance between x and xþ dx from x is given by
[31]

nðx; xÞ ¼ Aelxe
�lx�

R x

0
½aðx0Þþeðx0Þ� dx0 ð56Þ

with boundary condition

nðx; 0Þ ¼ 2
Z

N

0

aðxÞnðx; xÞ dx: ð57Þ

The parameter l is defined by the boundary
condition and A is a normalisation constant. This
equation is the pendant to Eq. (3). We see that the
average number of electrons increases exponen-
tially for any given function aðxÞ and eðxÞ:
The equation determining the statistical fluctua-

tion for this model is difficult to solve and we just
show Monte Carlo results for different para-
meters. As a simple model we assume the function
aðxÞ to be zero for xox0 and aðxÞ ¼ a0 for x > x0
and assume eðxÞ ¼ Z to be constant. Fig. 12 shows
an example for a single electron avalanche
spectrum for a ¼ 123=mm; x0 ¼ 0; 2; 4 mm: For
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Fig. 12. Charge distributions for avalanches started by a single

electron and multiplying over a fixed distance of 300 mm for

a ¼ 123=mm and x0 ¼ 0; 2; 4 mm: For x0 values approaching

1=a ¼ 8:13 mm the charge spectrum shows a pronounced peak.
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large x0 values the charge spectrum shows a
pronounced peak.
This avalanche statistics effect has however a

very small influence on the charge spectrum of the
0.3 and 2 mm RPCs since the position fluctuations
of the primary electrons completely dominate the
avalanche fluctuation as shown in the next section.
For these types of RPCs the fluctuation model
described in Section 4 is therefore perfectly
applicable.

11. Monte Carlo and comparison with experiment

Finally, we want to compare the simulation
procedure and detector physics parameters, out-
lined in the previous sections, to experimental
results. The simulation procedure for a single event
is the following

* The gas gap of size d is divided into Nstep steps
of size Dx ¼ d=Nstep corresponding to time
steps of Dt ¼ Dx=v; where v is the electron drift
velocity from Fig. 7 at the given field.

* Primary clusters are distributed along the gas
gap at distances following an exponential
distribution with the mean taken from Fig. 3a.

* Primary electrons are put to each cluster
following the cluster size distribution from
Fig. 3b.

* The avalanche for each single electron is
simulated using Eqs. (15)–(17) and the proce-
dure outlined in Section 4 with numbers for
Townsend and attachment coefficient from
Fig. 4. This provides NðtÞ; the number of
electrons at time t:

* If NðtÞ exceeds a specified value Nsat the
avalanche growth is stopped and the Nsat
electrons propagate to the gap end.
This procedure simulates the space-charge
effect.

* The induced current signal is then calculated
with Eq. (19) where the electron drift velocity is
from Fig. 7 and the weighting field is from
Eq. (21).

* In each simulation step the electrons are
propagated by DxðDtÞ; the electrons leaving
the gas gap are subtracted from NðtÞ; so the

total signal has a maximum duration of
Tpd=v:

Since the drift velocity v is a function of E=N (N is
the particle density), since the ‘reduced’ Townsend
coefficient a=N and attachment coefficient Z=N are
functions of E=N; and since the average distance
between clusters l scales with 1=N ; the gas proper-
ties given in Figs. 3, 4 and 7 have to be scaled for
pressures and temperatures different from
1023 mbar and 396:15 K: All the presented experi-
mental measurements were performed at CERN
with and average air pressure of around 970 mbar:
We include the electronics by convoluting the

RPC signal with the amplifier delta response f ðtÞ

hðsÞ ¼
n�nenn!t

ð1þ stÞnþ1
-

f ðtÞ ¼L�1½hðsÞ� ¼ n�nen t

t

� �n

e�t=t ð58Þ

where tp ¼ nt is the peaking time and n corre-
sponds to the number of stages. The noise is
included by adding Gaussian numbers to the
signal in each time bin with a s giving the correct
Equivalent Noise Charge (ENC) at the output.

11.1. Timing RPCs

Fig. 13(a) shows a simulated charge spectrum
for geometry from Fig. 1(c) at 3 kV ðE ¼
100 kV=cmÞ: First of all, the shape of the spectrum
and the 25% inefficiency match quite well the
numbers reported in Refs. [38,22]. Overlayed is a
simulation taking into account the high field
avalanche statistics effect from the previous
section. Although the charge spectrum for an
electron multiplying over a fixed distance is
strongly affected by the value of x0 (Fig. 12), the
RPC spectrum shows no effect whatsoever, which
is due to the fact that the charge fluctuations due
to the primary ionisation positions are much
larger. The charge spectra for three different
voltages for the quad-gap RPC from Fig. 1b are
shown in Fig. 13(b). The spectra are equal to the 4
times self-convoluted charge spectrum from the
single gap RPC and resemble quite well the ones
presented in Ref. [21]. Fig. 14 shows efficiency and
time resolution versus voltage for single and quad
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gap RPC. The single gap RPC was simulated for
the geometry from Fig. 1(c) giving a weighting
field of 1.25/mm with 7 GeV pions, i.e. 9.13
clusters/mm, 20 fC threshold, 200 ps amplifier
peaking time, 1 fC noise and Townsend coeffi-
cient, attachment coefficient and drift velocity for
the gas C2F4H2=i-C4H10=SF6 85/5/10 at 970 mbar:
The overlayed data are from Ref. [38].

The simulation for the quad gap RPC was
done with the same parameters, except for the
weighting field (b) with 1.026/mm and an amplifier
peaking time of 3 ns: The overlayed data are from
Ref. [20]. The agreement between measurements
and simulation is quite acceptable. Fig. 15 shows
the charge–time correlation for the quad gap RPC.
Finally we want to compare the signal rise time to
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Fig. 14. Results for efficiency and amplitude corrected time

resolution for the single gap (a) and quad gap RPC (b) for the

parameters mentioned in the text at T ¼ 296:15 K and P ¼
970 mbar: The open symbols are measurements. For the single
gap RPC the formulas for time resolution and efficiency from

Eqs. (47) and (53) are overlayed.
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The avalanche in each gap is saturated at Nsat ¼ 1:6� 107

electrons.
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measurements. The induced current signal rises as
expðf0tÞ where f0 ¼ ða� ZÞv: In Ref. [39], the
authors show that sending this signal through a
general linear network, the output signal shows the
same exponential rise and f0 can be measured by
setting two thresholds to the signal. From the two
threshold crossing times t1 and t2 one finds f0 by

lnðthr2=thr1Þ ¼ ðt2 � t1Þf0: ð59Þ

This relation holds only if the input signal is ‘still’
and exponential at the threshold crossing times.
We assume a ‘typical’ RPC signal for the geometry
of Fig. 1a ðEw=Vw ¼ 1:48=mmÞ; i.e. starting a
single electron avalanche at a distance l from the
gas gap edge and saturating the signal at Nsat ¼
1:6� 107 electrons

iðtÞ ¼

Ew
Vw

e0ve
ða�ZÞvt; totsat

Ew
Vw

e0vNsat; tsatotoT

0; t > T

8>><
>>: ð60Þ

where tsat ¼ lnNsat=ða� ZÞv is the time when the
avalanche goes into saturation and T ¼ ðd � lÞ=v

is the time when the electrons hit the gap edge. For
the typical values from Eq. (25) we find tsat ¼
702 ps and T ¼ 952 ps and an induced charge of
0:23 pC: For a preamp with tp ¼ 200 ps; 1 mV=fC
sensitivity and two stages (n ¼ 2 from Eq. (59)) we

find the preamp output signal shown in Fig. 16. For
thresholds larger that 8 fC; the threshold crossing
times are larger than tsat and Eq. (60) does not yield
f0 ¼ ða� ZÞv: For an operating voltage of 3 kV;
the full Monte Carlo gives an average value of
f0 ¼ 11:6 GHz for thr1; thr2 ¼ 40; 80 fC while ða�
ZÞv ¼ 23:5 GHz: This value is very sensitive to the
amplifier bandwidth and the ‘real’ space-charge
effect. Considering these uncertainties we consider
the measured value of f0 ¼ 8:9 GHz quoted in
Ref. [39] to be ‘not too far’ from the simulation.

11.2. Trigger RPCs

Fig. 17a shows simulated efficiency and time
resolution for the RPC from Fig. 2 and the gas
C2F4H2=i-C4H10=SF6 96.7/3/0.3. For er ¼ 10 the
weighting field is 0.417/mm. A 120 GeV muon
leaves 9.64 clusters/mm at normal conditions. The
induced charge is divided by 2, accounting for the
termination of the RPC strips and a 100 fC
threshold is applied. A preamp peaking time of
1:3 ns was assumed. The measurements from Ref.
[40] are quite well reproduced by the simulation.
The simulated spectra are again unaffected by
realistic x0 parameters. For Nsat ¼ 5� 107 elec-
trons the spectra show the pronounced peak as
observed in measurements (Fig. 18).
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Fig. 16. Typical RPC signal for the timing RPC from Fig. 1a.

At a threshold > 8 fC the signal does not rise exponentially.
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12. Effect of number of gaps

In this section we want to investigate the effect of
different numbers of gaps on time resolution and
efficiency. The weighting fields for an RPC with n

gas gaps of size d separated by n � 1 glass plates of
thickness b and permittivity e is (Eq. (20)) [11]

Ew

Vw
¼

e
n deþ ðn � 1Þb

; n > 1: ð61Þ

For the single gap RPC ðn ¼ 1Þ we use the
geometry from Fig. 1a with corresponding weight-

ing field from Eq. (21a). Since the weighting field
decreases with the number of gaps the total
induced charge is almost independent of the gap
number [42,3]. We assume an applied voltage that
gives a field of 100 kV=cm in the gas gaps, i.e. 3 kV
for single gap RPC, 6 kV for double gap RPC, etc.
Fig. 19 shows the time resolution and efficiency
versus gap number. The figure also shows the

0

20

40

60

80

100

8.8 9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

HV (kV)

E
ff

ic
ie

nc
y 

(%
)

measurement

simulation 960mbar

simulation 980mbar

formula 960mbar

formula 980mbar

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

8.8 9 9.2 9.4 9.6 9.8 10 10.2 10.4 10.6

HV (kV)

T
im

e 
R

es
ol

ut
io

n 
(n

s)

simulation 960mbar

simulation 980mbar

formula 960mbar

formula 980mbar

(a)

(b)
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1=
ffiffiffi
n

p
scaling of the single gap time resolution and

1� ð1� eÞn scaling of the single gap efficiency. We
see that the efficiency follows the simple scaling
considerations, the time resolution improvement
however is less than one expects from naive
scaling. The reason is that the timing is dominated
by the gap with the largest signal. The largest
signal gives the earliest threshold crossing time, so
the timing of the multi-gap RPC is approximately
given by the ‘earliest gap’. The earliest of n time
measurements however has a larger r.m.s. than the
average of n time measurements.

13. Amplifier bandwidth and noise

In this section we study the dependence of the
RPC time resolution on the amplifier bandwidth.
We characterise the amplifier by its peaking time tp
and order n as given in Eq. (59). We use the
300 mm single gap timing RPC at 3 kV as an
example. Fig. 20 shows the time resolution versus
amplifier peaking time. Neglecting the noise, the
time resolution is independent of peaking time

since using the charge–time correlation one can
fully correct for the introduced time slewing
effects. Including the noise however shows that
for slow amplifiers the intrinsic time resolution
cannot be recovered. The reason is that the time
jitter due to the noise (which cannot be corrected)
increases for slower signal rise time.

14. Conclusions

We have presented an RPC simulation procedure
including all detector physics and electronics effects
from primary ionisation up to the frontend electro-
nics output. Assuming a very prominent space-
charge effect that is modelled by simply stopping
the avalanche growth at a certain number of
electrons, we can reproduce the observed RPC
performance numbers quite well without any
additional assumptions. We only assume physical
parameters as given by Heed [17], Magboltz [18]
and Imonte [19]. The outlined simulation procedure
can be implemented in a Monte Carlo program in a
very simple way. Generally we can conclude that

* Neglecting space-charge effects, the calculated
average avalanche charges for the 300 mm
timing RPCs are a factor 107 larger than the
measured ones. This shows that space-charge
effect play a significant role in RPCs [16].

* The RPC efficiency is approximately given by
1� e�ð1�Z=aÞd=l½1þ ðVw=EwÞða� ZÞ=e0Qt�1=al: It
depends explicitly on the attachment coefficient
and not just on the effective Townsend coeffi-
cient.

* The RPC time resolution is approximately
given by st ¼ 1:28=ða� ZÞv and is independent
of the applied threshold.

* The high efficiency (75%) of single gap RPCs
with 300 mm gas gap is explained by the large
primary ionisation density (9.5/mm) of the
tetrafluorethane gas together with a very large
effective Townsend coefficient of about 113/mm.

* Secondary particles produced in the RPC
material should not play an important role in
the RPC behaviour.

* The time resolution for an n gap RPC does not
scale with st=

ffiffiffi
n

p
where st is the single gap RPC

0

20

40

60

80

100

120

0              2              4              6 8 10

2fC

1fC

0fC

Amplifier Peaking Time (ns)

T
im

e 
R

es
ol

ut
io

n 
(p

s)

Fig. 20. Simulation of the amplitude corrected time resolution

versus amplifier peaking time for the 300 mm single gap RPC
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time resolution. The efficiency however does
scale with the expected scaling law of 1� ð1�
eÞn where e is the efficiency of the single gap
RPC.

* Neglecting electronics noise, the amplifier
bandwidth has very little influence on the time
resolution since the time slewing introduced by
slow amplifiers can be fully corrected by the
charge–time correlation. Electronics noise
however introduces a jitter at the threshold
level which has more effect for slow amplifiers
and the intrinsic time resolution cannot be
recuperated.
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