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a b s t r a c t

The time response function of RPCs is derived. First, primary electron distributions in the RPC gas gap

are discussed. Then the exact expression for the fluctuations of an avalanche starting with a fixed

number of primary electrons is derived, using Legler’s model of avalanche multiplication in

electronegative gases. By means of the Z-Transform formalism, the primary electron distributions and

avalanche fluctuations are then combined and an analytic expression for the RPC time response function

is derived. The solution is further used to discuss signal threshold and attachment effects. Finally, the

time response function is evaluated for several primary ionization models.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction

Several attempts have been made to derive analytic expres-
sions for the key performance parameters, especially the time
response function of an RPC. Although the basic physics processes
that affect the time resolution are well understood and are easily
formulated by Monte Carlo simulations, an analytic expression
has the advantage of giving a deeper insight into the dependence
and limits of performance parameters. The intrinsic time response
function of an RPC was initially calculated for a single avalanche
[1,2] then extended to a fixed number of several avalanches
growing in parallel [3] and afterwards further extended to the
general situation of several avalanches growing simultaneously
with the number fluctuating according to a Poisson distribution
[4]. The case of an electronegative mixture was considered
explicitly in Ref. [5]. This latest model has still the drawback of
being based on the un-physical assumption of a single electron
per cluster, while in reality the cluster size distribution has
approximate 1=n2 form.

In this report we derive an analytic expression for the RPC time
response function that allows the inclusion of realistic cluster size
distributions. By use of the Z-Transform and Laplace-Transform
the final formula is expressed as a contour integral in the complex
plane, which can be explicitly solved for some special cases and is
well suited for numeric evaluation for the general case. This
formulation allows a straight forward insight into effects of
ll rights reserved.
threshold and attachment. Analytic expressions for the average
threshold crossing time and the r.m.s. time resolution are
presented as well. After derivation of the general formula, the
results from all the above mentioned reports are reproduced and
finally, the results for realistic detector physics assumptions are
presented.

Before proceeding to the main body of the paper we shall state
the principle result: the time response function for an RPC using a
gas with drift-velocity v, Townsend coefficient a, attachment
coefficient Z, assuming (1) an average number of n0 efficient
clusters which fluctuate according to a Poisson distribution (2) a
cluster size distribution f ðmÞ with Z-Transform FðzÞ having a
radius of convergence rF (3) avalanche multiplication according to
Legler’s avalanche model and (4) a threshold of n electrons, is
given by

rðn; tÞ ¼ 1

2pi

I
en0FðzÞ � 1

en0 � en0Fð1=kÞ

ð1� kÞ2nS

ð1� kzÞ2

� exp �St � n
ð1� kÞð1� zÞ

1� kz
e�St

� �
dz (1)

with S ¼ ða� ZÞv and k ¼ Z=a. The integration is over a circle with
radius rForo1=k. Writing z ¼ r expðifÞ and dz ¼ ir expðifÞdf and
integrating over f from �p;p the expression is well suited for
numerical evaluation.

This report is essentially the analytic formulation of the Monte
Carlo simulations presented in Ref. [2], so the discussion on
comparison between measurement and simulation is already
presented there.

www.sciencedirect.com/science/journal/nima
www.elsevier.com/locate/nima
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2. Formulation of the problem

We want to find the RPC time response function rðn; tÞ defined
as the probability that the number of electrons in the gas gap
crosses a threshold of n electrons between time t and t þ dt. If
gðmÞ is the probability that a charged particle leaves m primary
electrons in the gas gap and hðm;n; tÞdt is the probability that an
avalanche starting with m primary electrons crosses a threshold of
n electrons between time t and t þ dt, the time response function
of the RPC is given by

rðn; tÞ ¼ 1

a0

X1
m¼0

gðmÞhðm;n; tÞ (2)

where a0 is a normalization constant. In case hðm;n; tÞ were a
normalized distribution, a0 would be equal to unity. There is,
however, a probability that all m primary electrons are attached
and the avalanche never reaches the threshold, and the expressionR

hðm;n; tÞdt must give exactly this probability. Because in the
presence of attachment hðm;n; tÞ is not normalized to unity, the
normalization factor a0 will be different from 1. The above relation
can be transformed into a relation between complex functions by
use of the Z-transformation (see Appendix A): if GðzÞ is the
Z-Transform of gðmÞ with radius of convergence rG and Hðz;n; tÞ is
the Z-Transform of hðm;n; tÞ with radius of convergence rH , using
Eqs. (87), (89) and (90), Eq. (2) can be transformed into

rðn; tÞ ¼ lim
z2!1
ðz2 � 1Þ

�
z2

z2 � 1

1

2pi

1

a0

I
GðzÞH

z2

z
;n; t

� � dz

z

� �
(3)

which results in the form

rðn; tÞ ¼ 1

2pi

1

a0

I
GðzÞH

1

z
;n; t

� �
dz

z
. (4)

The path of integration is a circle centered at z ¼ 0 with radius r

satisfying rGoro1=rH . This is the expression for the time response
function that we will use throughout this report. The jth moment
mj of rðn; tÞ is given by

mj ¼

Z
tjrðn; tÞdt

¼
1

a0

X1
m¼0

gðmÞ

Z
tjhðm;n; tÞdt

¼
1

a0

X1
m¼0

gðmÞujðm;nÞ. (5)

In the Z-domain this reads as

mj ¼
1

2pi

1

a0

I
GðzÞUj

1

z
;n

� �
dz

z
(6)

with rGoro1=rUj
and

Ujðz;nÞ ¼Z½ujðm;nÞ;m; z�

¼

Z
tjHðz;n; tÞdt. (7)

Because rðn; tÞ must be normalized, i.e. m0:¼1 we have

a0 ¼
1

2pi

I
GðzÞU0

1

z
;n

� �
dz

z
. (8)

The average threshold crossing time t and the variance s2 of rðn; tÞ
are

t ¼ m1; s2 ¼ m2 � m2
1. (9)

The primary ionization distribution gðmÞ follows from elementary
assumptions of a Poissonian distribution of the primary clusters
and a 1=n2 or more complicated cluster size distribution. For the
avalanche distribution hðm;n; tÞ we use Legler’s model of ava-
lanche fluctuations in electronegative gases [7].
3. Primary ionization, G(z)

Mechanisms and statistics of primary ionization caused by a
charged particle traversing the gas gap are well known and were
discussed e.g. in Ref. [2,8,9] for the used RPC gases. The probability
qðnÞ to find n40 primary clusters in the gas gap follows to a good
approximation a Poisson distribution [3], according to

qð0Þ ¼ 0; qðnÞ ¼
1

en0 � 1

nn
0

n!
; n40 (10)

where n0 is the average number of efficient clusters in the gas gap.
We can estimate n0 the following way: in case a primary electron
is deposited very close to the ‘anode’ plate, the avalanche cannot
grow sufficiently to cross the threshold. The charge induced by the
electrons from an avalanche started with a single electron and
growing with the average rate of expðStÞ is [2,8,10]

Q ðxÞ �
Ew

Vw

e0

a� Z
eða�ZÞx. (11)

The efficient gap ends where this charge Q ðxÞ is just reaching the
threshold QT before the electrons hit the resistive plate, so we
have [2,8,10]

QT ¼ Q ðxÞ; x ¼
1

a� Z ln
QT

e0

a� Z
Ew=Vw

� �
. (12)

Assuming the 300mm single gap and four gap geometries (1a) and
(1b) described in Ref. [2], we have Ew � 1:5 mm�1. With typical
values of a� Z ¼ 110 mm�1 and QT ¼ 20 fC we find x ¼ 150mm.
This means that the efficient gap is only 300� 150 ¼ 150mm, and
with an average distance of 100mm between clusters we find n0 ¼

1:5 for a single gap. For a four gap RPC this gives n0 ¼ 6 efficient
clusters.

The probability f ðnÞ to find n electrons per cluster, the so called
cluster size distribution, follows approximately a 1=n2 law and the
detailed distribution depends on the gas composition. The
probability gðnÞ to find n primary electrons in the gas gap is,
therefore,

gðnÞ ¼ qð0Þd0n þ qð1Þf ðnÞ

þ qð2Þ
Xn

m¼0

f ðn�mÞf ðmÞ

þ qð3Þ
Xn

m¼0

Xm
k¼0

f ðn�mÞf ðm� kÞf ðkÞ þ � � � . (13)

If FðzÞ is the Z-Transform of f ðnÞ we use Eq. (88) to find the
Z-Transform of gðnÞ, which results in

GðzÞ ¼
1

en0 � 1
0þ

n0

1!
FðzÞ þ

n2
0

2!
FðzÞ2 þ � � �

� �

¼
en0FðzÞ � 1

en0 � 1
. (14)

For the following discussion we use three cluster size distribu-
tions

(15)

The distributions are shown in Fig. 1 together with a more
detailed prediction from HEED [6]. The first distribution in the
above table represents a single electron per cluster and the second
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one represents an exponential distribution with an average of ne ¼

1=ð1� qÞ electrons per cluster. Both distributions are un-physical
and are only used for illustration. The 1=n2 distribution reflects
the fact that the cross-section for the energy transfer during an
interaction between the incoming particle and a gas molecule is
1=E2 distributed, which is the basic assumption for the Landau
distribution and serves as a minimum model respecting elemen-
tary physics. The function Li2ðxÞ is the dilogarithm function [11].
The inversion of GðzÞ gives the number of primary electrons in the
gas gap. With a single electron per cluster we have again the
Poisson distribution for the number of primary electrons in the
gas gap

gð0Þ ¼ 0; gðnÞ ¼
nn

0

n!ðen0 � 1Þ
; n40. (16)

For the exponential distribution we invert GðzÞ by expanding it in a
Laurent series around z� q (Eq. (83)) and find the coefficient of
ðz� qÞ�1, which results in gð0Þ ¼ 0 and for n40 we have

gðnÞ ¼
n0ð1� qÞqn�1

en0 � 1

Xn�1

j¼0

n� 1

j

 !
1

ðjþ 1Þ!

n0ðq� 1Þ

q

� �j

¼
n0ð1� qÞqn�1

en0 � 1 1F1 1� n;2;
n0ðq� 1Þ

q

� �
. (17)

The function 1F1ða; b; zÞ is the confluent hypergeometric function
[13]. The inversion of GðzÞ for the 1=n2 distribution is done by
using Eq. (85) and dLi2ðzÞ=dz ¼ � lnð1� zÞ=z, which leads to

gð0Þ ¼ 0; gðnÞ ¼
an

n!ðen0 � 1Þ
; n40. (18)

The an are defined by the recursive relation

an ¼
6n0ðn� 1Þ!

p2

Xn�1

j¼0

aj

j!ðn� jÞ
; n40 (19)
Fig. 1. Cluster size distribution for the exponential model, the 1=n2 model and a

HEED calculation.

Fig. 2. Primary electron distribution with n0 ¼ 5 for the exponential cluster size distribu

linear scale, (b) logarithmic scale. All distributions have the median at around n ¼ 10 e
with a0 ¼ 1. The first two terms are

a1 ¼
6n0

p2
; a2 ¼

3n0ð12n0 þ p2Þ

p4
� � � . (20)

An approximation for large n can be derived by using the trick
from Appendix C, which gives

gðnÞ �
en0

en0 � 1

6n0

p2

1

n2
þ

72n2
0

p4

ln n

n3
þ O

1

n4

� �� �
. (21)

We see that the distribution behaves like 1=n2 for large n which is
the important characteristic of the Landau distribution. In Fig. 2,
the primary electron distribution for the exponential, the 1=n2 and
the HEED cluster size distribution are shown.
4. Avalanche multiplication, Hðz;n; tÞ

In this section we derive Hðz;n; tÞ for the exact solution and the
continuous approximation of Legler’s avalanche model.
4.1. Exact solution of Legler’s avalanche model

Legler’s avalanche model for electronegative gases [7] is based
on the assumption that adx is the probability that an electron
duplicates within a distance dx and Zdx is the probability that an
electron is attached within a distance dx, independent of the
electron’s history. This defines the probability distribution
pðn; xÞdx to find n electrons between distance x and xþ dx. While
Legler establishes an equation for pðn; xÞ which contains products
of pðn; xÞ which he later transforms into the nonlinear Riccati
differential equation [7], in Ref. [2] the following partial
differential/difference equation is derived:

qpðn; xÞ

qx
¼ � pðn; xÞnðaþ ZÞ þ pðn� 1; xÞðn� 1Þa

þ pðnþ 1; xÞðnþ 1ÞZ. (22)

Assuming that the avalanche starts with m electrons at x ¼ 0 adds
the condition pðn;0Þ ¼ dmn. The equation can be solved by first
performing the Z-Transform Pðz; xÞ ¼Z½pðn; xÞ;n; z� and using
Eq. (92), which gives

qPðz; xÞ

qx
¼
qPðz; xÞ

qz
ððaþ ZÞz� a� Zz2Þ (23)

with the condition Pðz;0Þ ¼ 1=zm. The solution of this equation is
derived in Appendix E. In the following we write pðm;n; xÞ for the
probability that an avalanche starting with m electrons contains n

electrons at x. Defining k ¼ Z=a and the effective Townsend
coefficient ae ¼ a� Z ¼ að1� kÞ, the solution from Eq. (23)
tion with ne ¼ 2:27, the 1=n2 distribution and the HEED cluster size distribution. (a)

lectrons.
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reads as

Pðm; z; xÞ ¼
kðz� 1Þeaex � kzþ 1

ðz� 1Þeaex � kzþ 1

� �m

. (24)

To check the normalization of pðm;n; xÞ we use Eq. (91) and verify
that

X1
n¼0

pðm;n; xÞ ¼ Pðm;1; xÞ ¼ 1. (25)

The average number of electrons at position x is calculated by use
of Eqs. (87), (90) and (92), which gives

nðm; xÞ ¼
X1
n¼0

npðm;n; xÞ

¼ lim
z!1

�z2 dPðm; z; xÞ

dz

� �
¼ m eaex. (26)

For finding the variance s2 we calculate

n2 ¼
X1
n¼0

n2pðm;n; xÞ

¼ lim
z!1

z2 d

dz
z

dPðm; z; xÞ

dz

� �

¼
1þ k

1� k
m eaexðeaex � 1Þ þm2ðeaexÞ

2 (27)

and get

s2 ¼ n2 � n2
¼

1þ k

1� k
m eaexðeaex � 1Þ. (28)

In the following we write the average of a single electron
avalanche as n:¼nð1; xÞ. The probability pðm;n; xÞ is given by the
inverse Z-Transform of Pðm; z; xÞ. The function has an mth order
pole at z0 ¼ ðn� 1Þ=ðn� kÞ and by using Eq. (98) we can evaluate
the integral of Eq. (83). Defining

a ¼
1� k

n� k
; b ¼ 1� a ¼

n� 1

n� k
(29)

we get pð0;n; xÞ ¼ dn0 and for m40 we have

pðm;0; xÞ ¼ ðkbÞm (30)

pðm;n40; xÞ ¼ ðna2Þ
mbðn�mÞ

�
Xm�1

j¼0

n� 1

m� j� 1

 !
m

j

 !
kb2

na2

 !j

. (31)

For m ¼ 1, i.e. for an avalanche starting with a single electron, we
have [7]

pð1;0; xÞ ¼ k
n� 1

n� k

pð1;n40; xÞ ¼ n
1� k

n� k

� �2

1�
1� k

n� k

� �n�1

. (32)

Using the hypergeometric function 2F1ðu;v;w; zÞ [12], Eq. (31) can
be written as

pðm;nXm; xÞ ¼ ðna2Þ
mbðn�mÞm

n

n

m

 !

�2F1 1�m;�m;n�mþ 1;
kb2

na2

 !
(33)

pðm;nom; xÞ ¼ ðna2Þ
nbðm�nÞ

m

n

 !

�2F1 �n;1� n;m� nþ 1;
kb2

na2

 !
. (34)
This is the exact expression for the probability to find n electrons
at distance x for an avalanche that has started with m electrons at
x ¼ 0, in a gas with attachment coefficient k. Without using the
Z-Transform the expression can be calculated by m-times self
convoluting Eq. (32).

4.2. Continuous approximation of Legler’s avalanche model

For large numbers of n the distribution pðm;n; tÞ can be
assumed to be continuous in n and we can approximate it. The
Z-Transform Pðm; z; tÞ becomes the Laplace Transform of the
continuous approximation Q ðm; s; tÞ if we replace z by es and
approximate for small s (Appendix C)

Q ðm; s; xÞ ¼
kðes � 1Þn� eskþ 1

ðes � 1Þn� eskþ 1

� �m����
s!0

�
nksþ 1� k

nsþ 1� k

� �m

. (35)

The probability qðm;n; xÞ that an avalanche starting with m

electrons at x ¼ 0 contains n electrons at x is then given by the
inverse Laplace Transform of this expression.

qðm;n; xÞ ¼L�1
½Q ðm; s; xÞ; s;n�

¼ kmdðnÞ þ
ð1� kÞ2

n
exp �n

ð1� kÞ

n

� �

�km�1
Xm�1

j¼0

m

jþ 1

 !
1

j!

nð1� kÞ2

nk

 !j

¼ kmdðnÞ þ
ð1� kÞ2

n
m exp �n

ð1� kÞ

n

� �

�km�1
1F1 1�m;2;�

nð1� kÞ2

kn

 !
. (36)

This is the continuous approximation of Eqs. (30) and (31). For a
single primary electron this becomes

qð1;n; xÞ ¼ kdðnÞ þ
ð1� kÞ2

n
exp �n

ð1� kÞ

n

� �

in lieu of Eq. (32). For k ¼ 0 we have

qðm;n; xÞ ¼
1

ðm� 1Þ!

n

n

� �m�1 1

n
exp �

n

n

� �
. (37)

4.3. Exact expression for Hðz;n; tÞ

If the avalanche proceeds with velocity v, we have x ¼ vt,
defining the time development of the avalanche. Since
anpðm;n; xÞdx is the probability that an avalanche starting with
m electrons contains n electrons at x and nþ 1 electrons at xþ dx,
the expression avnpðm;n;vtÞdt is the probability that the
avalanche crosses a threshold of n electrons between time t and
t þ dt. On the other hand, in case of attachment, there is also a
probability that the avalanche returns below the threshold before
again crossing it in positive direction. The question arises which of
the threshold crossings one uses, and the most reasonable
assumption is the use of the ‘averaged’ avalanche growth with
the effective Townsend coefficient a� Z at this point. The
probability that an avalanche starting with m electrons crosses a
threshold of n electrons between time t and t þ dt is, therefore,

hðm;n; tÞ ¼ amnða� ZÞvnpðm;n;vtÞ

¼ amnSnpðm;n;vtÞ (38)

where we have defined

S ¼ ða� ZÞv. (39)
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The constants amn must be chosen such that
R

hðm;n; tÞdt is equal
to the probability that the avalanche crosses the threshold at all.
In order to determine amn we must first calculate cnm ¼ S

R
npðm;

n; tÞdt. For this we calculate the Z-Transform of pðm;n; tÞ with
respect to m and n

PABðz1; z2; tÞ ¼Z½pðm;n; tÞ;m; z1;n; z2�

¼
X1
m¼0

Pðm; z2; tÞ

zm
1

¼
z1½ðkz2 � 1Þ � nðz2 � 1Þ�

nðk� z1Þðz2 � 1Þ þ ðz1 � 1Þðkz2 � 1Þ
(40)

with n ¼ expðStÞ. The Z-Transform of cmn is, therefore,

Cðz1; z2Þ ¼Z

Z 1
0

Snpðm;n; tÞdt;m; z1;n; z2

� �

¼ S

Z 1
0
�z2

qPABðz1; z2; tÞ

qz2
dt

¼
ð1� kÞz1z2

ðz2 � 1Þðz1 � kÞðz1z2 � 1Þ
.

The cnm are given by the inverse Z-Transform of Cðz1; z2Þ

cmn ¼ 1� km; nXm

¼ km�n
ð1� kn

Þ; nom. (41)

We can interpret these expressions in the following way. If n4m,
the number of electrons crosses a threshold of n if at least one of
the m primary electrons is not attached, which has a probability of
1� km. If nom, i.e., the threshold n is smaller than the number m

of primary electrons, m� n electrons must be attached in order to
arrive at the threshold level (probability km�n), and then at least
one of the remaining n electrons must not be attached and
develop and avalanche (probability 1� kn). We therefore conclude
that in Eq. (38) the constant amn ¼ 1 and hðm;n; tÞ is already
properly normalized.

Finally, we can calculate Hðz;n; tÞ. The Z-Transform of pðm;n; xÞ

with respect to m is given by inverting PAB. The inverse
Z-Transform with respect to z2 is then given by

Hðz;n; tÞ ¼ Sn
1

2pi

I
PABðz; z2; tÞz

n�1
2 dz2. (42)

The integrand has a first order pole at z2 ¼ ðnðk� z1Þ þ z1 � 1Þ=
ðnðk� z1Þ þ kðz1 � 1ÞÞ, so we can evaluate the integral by use of Eq.
(98) and get the final expression

Hðz;n; tÞ ¼
Snznð1� kÞ2

½kðn� 1Þ � zðn� kÞ�2

� 1�
ð1� kÞð1� zÞ

kðn� 1Þ � zðn� kÞ

� �n�1

(43)

with rH ¼ kðn� 1Þðn� kÞ. The function U0ðz;nÞ for calculating the
normalization is given by

1=zU0ð1=z;nÞ ¼

Z 1
0

1=zHð1=z;n; tÞdt

¼
ð1� kÞð1� znÞ

ð1� zÞð1� kzÞ
; rU0

¼ 1.

The analytic expressions Ujðz;nÞ for calculation of the higher
moments are too complicated to be useful and the average and
standard deviation must be calculated by numerical integration of
rðn; tÞ.

4.4. Continuous approximation of Hðz;n; tÞ

For the continuous approximation qðm;n; tÞ, the probability for
an avalanche starting with m electrons to cross a threshold of n

electrons between time t and t þ dt is, like in the previous section,
given by

hðm;n; tÞ ¼ Snqðm;n;vtÞ. (44)

We verify by the same methods the normalization of hðm;n; tÞ,
givingZ 1
�1

hðm;n; tÞdt ¼ 1� km. (45)

To find Hðz;n; tÞ we proceed as before

QABðz; s; xÞ ¼
X1
m¼0

Q ðm; s; xÞ

zm

¼
zðsnþ 1� kÞ

snðz� kÞ þ ðz� 1Þð1� kÞ
(46)

Hðz;n; tÞ ¼ nSL�1
½QABðz; s; xÞ; s;n�

¼
zð1� kÞ2

ðz� kÞ2
nS

n
exp �n

ð1� kÞðz� 1Þ

z� k

1

n

� �
(47)

with rH ¼ k. The functions U0ðz;nÞ, U1ðz;nÞ and U2ðz;nÞ (Eq. (7)) for
calculation of the normalization, the average threshold crossing
time and the standard deviation are given by

1

z
U0ð1=z;nÞ ¼ JðzÞ (48)

1

z
U1ð1=z;nÞ ¼

JðzÞ

S
ðgþ ln nþ ln MðzÞÞ (49)

1

z
U2ð1=z;nÞ ¼

JðzÞ

S2
½g2 þ p2=6þ ð2gþ ln nÞ ln n

þ 2ðgþ ln nÞ ln MðzÞ þ ln2MðzÞ� (50)

with rU0
¼ rU1

¼ rU2
¼ 1. The constant g is the Euler–Mascheroni

constant and we have defined

JðzÞ ¼
1� k

ð1� kzÞð1� zÞ
; MðzÞ ¼

ð1� kÞð1� zÞ

1� kz
. (51)

5. Time response function, rðn; tÞ

We have now all the ingredients to write down the RPC time
response function rðn; tÞ. Before calculating rðn; tÞ explicitly for
different primary ionization models we derive a few general
properties that are independent of the specific form of the
primary electron distribution GðzÞ.

5.1. Exact solution

The time response function using the exact solution of Legler’s
avalanche model is given by using Hðz;n; tÞ from Eq. (43) and reads
as

rðn; tÞ ¼ 1

a0

1

2pi

I
GðzÞ

nS e�Stð1� kÞ2

½ð1� kzÞ � k e�Stð1� zÞ�2

� 1�
e�Stð1� kÞð1� zÞ

ð1� kzÞ � k e�Stð1� zÞ

� �n�1

dz

where the path of integration is a circle centered at z ¼ 0 with
radius r where

rGoro
1

k

eSt � k

eSt � 1
. (52)

The normalization constant a0 can be calculated by

a0 ¼
1

2pi

I
GðzÞ
ð1� kÞð1� znÞ

ð1� zÞð1� kzÞ
dz (53)
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or directly by Eq. (5) with Eq. (41)

a0 ¼
X1
m¼0

gðmÞ

Z
hðm;n; tÞdt

¼
Xn

m¼0

gðmÞð1� km
Þ

þ
X1

m¼nþ1

gðmÞkm�n
ð1� kn

Þ

¼
1

kn � 1

� �
Gð1=kÞ þ

Xn

m¼0

gðmÞ 1�
km

kn

� �
. (54)

5.2. Continuous approximation

As above we calculate a0 by Eqs. (5) and (45) and get

a0 ¼
X1
m¼0

gðmÞð1� km
Þ ¼ 1� Gð1=kÞ. (55)

We can also find the same expression by performing the large n

limit of Eq. (54). The time response function for the continuous
avalanche approximation Eq. (47) is, therefore,

rðn; tÞ ¼ 1

2pi

I
GðzÞ

1� Gð1=kÞ

nSð1� kÞ2

ð1� kzÞ2

� exp �St � n
ð1� kÞð1� zÞ

1� kz
e�St

� �
dz. (56)

The path of integration is a circle of radius r with rGoro1=k

centered at z ¼ 0. We see that Eq. (56) is a good approximation
of Eq. (52) if expðStÞb1, because then we have ð1� xÞn�1

¼

exp½ðn� 1Þ lnð1� xÞ� � expð�nxÞ for x51. This time response
function has several interesting properties which we investigate
in the following.

Threshold independence: First we observe that by scaling the
threshold n by a factor b ¼ elnb, the distribution is simply shifted
in time by T ¼ �ðlnbÞ=S

rðbn; tÞ ¼
1

2pi

I
G

GðzÞJðzÞMðzÞ

1� Gð1=kÞ
Sn

� exp½�St þ lnb� nMðzÞ e�Stþlnb�dz

¼ rðn; t � ðlnbÞ=SÞ

where JðzÞ and MðzÞ are from Eq. (51). We learn that the shape of
the time response function, and therefore the time resolution of
an RPC, is independent of the applied threshold in case the
requirement expðStÞb1 is fulfilled, i.e., if the number of electrons
is the gap is large.

Cluster transformation: In absence of attachment (k ¼ 0) we
have

rðn; tÞ ¼ 1

2pi

I
G

GðzÞSn exp½�St � nð1� zÞ e�St �dz (57)

where G denotes the path of integration, namely a circle centered
at the origin with a radius of rGoro1. By using the variable
transformation

z ¼
y� a

1� a
! y ¼ ð1� aÞzþ a; dz ¼

dy

1� a

the integral transforms into

rðn; tÞ ¼ 1

2pi

I
G0

G
y� a

1� a

� �
S

n

1� a

� exp �St �
n

1� a
ð1� yÞ e�St

h i
dy.

The path of integration G0 is a circle centered at y ¼ a with radius
r0 where ð1� aÞrGor0oð1� aÞ=k. Therefore, the time response
function for a primary electron distribution GðzÞ and threshold n is
equal to the time response function for a primary electron
distribution GðzðyÞÞ ¼ Gððy� aÞ=ð1� aÞÞ with a threshold of
n=ð1� aÞ. Because zð1Þ ¼ 1 we know that Gðzð1ÞÞ ¼ 1 which means
that it the Z-Transform of a normalized probability distribution.
Since the variance s is independent of the threshold, the time
resolution for a cluster size distribution GðzÞ and GðzðyÞÞ is
equivalent. As an example we assume a single primary electron
and, therefore, GðzÞ ¼ 1=z. We have GðzðyÞÞ ¼ ð1� aÞ=ðy� aÞ and,
therefore,

Z�1
½GðzðyÞÞ; y;n� ¼ ð1� aÞan�1 (58)

which represents an exponential electron distribution. The time
resolution for a single primary electron and an exponential
primary electron distribution is therefore equivalent.

Attachment transformation: By using a variable transformation

1� z

1� kz
¼ 1� y! zðyÞ ¼

y

1� kþ ky
(59)

dz ¼
ð1� kÞ

ð1þ kðy� 1ÞÞ2
dy (60)

the time response function from Eq. (56) transforms into

rðn; tÞ ¼ 1

2pi

I
G00

GðzðyÞÞ

1� Gð1=kÞ

�Sn0 exp½�St � n0ð1� yÞ e�St�dy (61)

where n0 ¼ ð1� kÞn. This means that the time response function
for a primary electron distribution GðzÞ with attachment k and
threshold n is equivalent to the time response function for a
primary electron distribution GðzðyÞÞ without attachment and the
threshold n0 ¼ ð1� kÞn. Because zð1Þ ¼ 1 the distribution GðzðyÞÞ is
the Z-Transform of a normalized probability distribution. To find
the path of integration G00 we note that the above transformation
is a so called bilinear transformation which has the general form
y ¼ ðaþ bzÞðc þ dzÞ. It has the property that circles in the z-plane
are transformed into circles in the y-plane. The above expression
transforms a circle of radius r centered at z ¼ 0 into a circle with it
is center on the real axis and crossing this axis at

y1 ¼
�rð1� kÞ

1þ kr
; y2 ¼

rð1� kÞ

1� kr
. (62)

The circle of radius r ¼ 1=k, therefore, transforms into the entire
half-plane ‘right’ of y ¼ �ð1� kÞ=2k.

Average and variance: The average threshold crossing time t

and the variance s of the time response function are given by
Eq. (9) using Eqs. (6) and (7) and Eqs. (48)–(50). Defining

k1 ¼
1

2pi

I
GðzÞJðzÞ ln MðzÞ

1� Gð1=kÞ
dz

k2 ¼
1

2pi

I
GðzÞJðzÞln2MðzÞ

1� Gð1=kÞ
dz (63)

with rGoro1, a lengthy but elementary calculations gives

St ¼ ðln nþ gþ k1Þ; S2s2 ¼
p2

6
þ k2 � k2

1. (64)

As expected, a change of threshold n results in a simple shift of t,
while the variance s2 is independent of the threshold.
6. Time response function for m primary electrons

The time response function for a fixed number of m primary
electrons can be directly written down using Eqs. (30), (31) and
(38) for the exact avalanche solution, and Eqs. (36) and (44) for
the continuous approximation. For the continuous avalanche
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approximation this reads as

rðn; tÞ ¼ nS

a0
ð1� kÞ2 expð�St � nð1� kÞ e�StÞ

�km�1
Xm�1

j¼0

m

jþ 1

 !
1

j!

nð1� kÞ2

k
e�St

 !j

(65)

where a0 a normalization constant. Fig. 3 shows the time response
function rðn;1Þ for the exact avalanche model and the continuous
approximation for a single primary electron (m ¼ 1), different
thresholds n and different attachment coefficients k. We see that
for thresholds nb1, the shape of rðn; tÞ for the exact avalanche
model and the continuous approximation coincide. We also see
that a change of threshold n results in a shift of r without
changing the shape in case nb1. In order to see how Eq. (65) is
calculated from Eq. (56) we use GðzÞ ¼ 1=zm for the m primary
electrons and we use the transformed Eq. (61). This results in

rðn; tÞ ¼ 1

2pi

1

1� km

I
kþ

1� k

y

� �m

Sn0

� expð�St � n0ð1� yÞ e�StÞdy

¼
n0S

1� km expð�St � n0 e�StÞkm
�

1

2pi

�
Xm

j¼0

m

j

 !
ð1� kÞj

kj

I
1

yj
expðn0y e�StÞdy. (66)

The integral evaluates to zero for j ¼ 0 and for j40, by use of Eq.
(98), we get

1

2pi

I
1

yj
expðn0y e�StÞdy ¼

1

ðj� 1Þ!
ðn0 e�StÞ

j�1.

This above expression is equal to Eq. (65) with the normalization
factor being a0 ¼ 1� km. In absence of attachment ðk ¼ 0Þ
we have

rðn; tÞ ¼ Snm

ðm� 1Þ!
expð�mSt � n e�StÞ. (67)

This distribution has a peak at St ¼ ln n=m. The peak has the value
Sðm=eÞm=ðm� 1Þ!. Curiously the distribution for ðmþ 1Þ crosses
exactly through this peak as seen in Fig. 4. In the same figure we
see the time response function for different attachment coeffi-
cients, and we observe that for larger attachment, meaning k! 1,
the curves for different primary electron numbers are very similar.
Mathematically this is seen by the fact that for 1� k51 the factor
ð1� kÞ2j in Eq. (65) decreases very quickly with j such that the
j ¼ 0 term of the sum dominates, giving

rðn; tÞ ! nSð1� kÞ expð�St � nð1� kÞ e�StÞ.

The time response function, therefore, becomes equal to the one
for a single primary electron with an effective threshold of
n0 ¼ ð1� kÞn.

Next we calculate the average threshold crossing time and the
time resolution for a fixed number of m primary electrons. k1 from
Eq. (63) becomes

k1ðmÞ ¼
1

2pi

I
1

zm

JðzÞ ln MðzÞ

1� km dz. (68)

The expression has an mth order pole at z ¼ 0 and we can evaluate
the integral using Eq. (98)

StðmÞ ¼ ln nþ gþ lnð1� kÞ �
1

1� km

�
Xm�1

j¼1

1

j
½ð1þ km

Þ � ðkj
þ km�j

Þ�. (69)
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In the same way we find k2 and get for the variance s2 (Eq. (64))
the lengthy but elementary expression

S2sðmÞ2 ¼ p2

6
þ

2

1� km

�
Xm�1

j¼1

Xj�1

r¼1

1

jr
ð1� km�j

þ kj
� km
Þ

�

�
kr

rðj� rÞ
ð1� km�j

Þ

�
þ

1

ð1� km
Þ
2

�
Xm�1

j¼1

Xm�1

r¼1

1

jr
½2ð1þ km

Þðkj
þ km�j

Þ

� ð1þ km
Þ
2
� ðkj

þ km�j
Þðkr
þ km�r

Þ�. (70)

The dependence of t and s on the number of primary electrons is
shown in Figs. 5 and 6. In order to find the asymptotic
approximation of tðmÞ and sðmÞ for large m we use the trick
described in Appendix C. We just illustrate the calculation for tðmÞ,
where we calculate the Z-Transform of k1ðmÞ. We assume that k is
small and km therefore negligible, which gives

Z½k1ðmÞ;m; z� ¼
X1
m¼0

k1ðmÞ

zm

�
1

2pi

I X1
m¼0

1

zmzm
2

 !
Jðz2Þ ln Mðz2Þdz2

¼
1

2pi

I
Jðz2Þ ln Mðz2Þ

1� z2z
dz

¼
1

z
Jð1=zÞ ln Mð1=zÞ. (71)

We then replace z by es, expand the expression around s ¼ 0 and
perform the inverse Laplace Transform of this series, which gives

StðmÞ � ln n� ln mþ
1þ k

2ð1� kÞ

1

m

þ
1þ kð10þ kÞ

12ð1� kÞ2
1

m2
þ O

1

m3

� �
. (72)
The leading term of this approximation is easily interpreted by the
average growth of the avalanche started with m electrons,
according to nðtÞ ¼ m expðStÞ. The threshold n is crossed at time
t ¼ ðln n� ln mÞ=S.

Performing the same operation for k2ðmÞ and using Eq. (64) we
find

S2s2ðmÞ �
1þ k

1� k

1

m
þ

1þ kð6þ kÞ

2ð1� kÞ2
1

m2
þ O

1

m3

� �
. (73)

The first order and second order approximation are superimposed
to the exact calculation in Figs. 5 and 6. For large values of m the
variance decreases as 1=m, for small attachment this behavior is
also quite accurate for small values of m. The same is true for the
average. Finally, we observe that for k ¼ 0 we get

St ¼ ln nþ g�
Xm�1

j¼1

1

j
; S2s2 ¼

p2

6
�
Xm�1

j¼1

1

j2
(74)

as in Ref. [3]. The variance is a quite curious expression: because
we know that due to the central limit theorem the variance tends
to zero for large primary electrons numbers m, it must hold thatP1

j¼11=j2
¼ p2=6! We have, therefore, solved that famous problem

of summing the inverse squares by an RPC detector physics
argument! The second order continuous approximation is
S2s2 ¼ 1=mþ 1

2m2, which is remarkably accurate even for small
values of m.
7. RPC time response function

Finally, we can calculate the RPC time response function for a
charged particle passing an RPC gap. We use the Poissonian
number of efficient clusters, with average n0, and the different
cluster size distributions as discussed in Section 3. In the
following we use only the continuous avalanche approximation.



ARTICLE IN PRESS

0 5 10 15 20 10 15 20
electrons electrons

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

S
�

S
�

k=0

0 5

k=0.3

10 15 20
electrons

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

S
�

0 5

k=0.6

Fig. 6. Variance of the threshold crossing time for k ¼ 0; 0:3; 0:6 versus number of primary electrons. The solid lines show the first order approximation from Eq. (73),

namely ð1þ kÞ=ð1� kÞ=m.

2

4

6

8

10

0 5 10 15 20 10 15 20
electrons electrons

S
t

S
t

k=0

2

4

6

8

10

0 5

k=0.6

10 15
electrons

S
t

2

4

6

8

10

0 5 20

k=0.6

Fig. 5. The figures show the average threshold crossing time for a threshold of n ¼ 1000 and k ¼ 0; 0:3; 0:6 versus number of primary electrons. The solid line shows the

first term of the approximation from Eq. (72), namely ln n� ln m.

W. Riegler / Nuclear Instruments and Methods in Physics Research A 602 (2009) 377–390 385
7.1. Single electron per cluster, no attachment

We first consider a single electron per cluster in absence of
attachment, i.e. k ¼ 0 and FðzÞ ¼ 1=z. We have

rðn; tÞ ¼ 1

2pi

I
en0=z � 1

en0 � 1
Sn expð�St � nð1� zÞ e�StÞdz

¼
Sn expð�St � n e�StÞ

en0 � 1

1

2pi

I
en0=z enze�St

dz

¼
Sn expð�St � n e�StÞ

en0 � 1
�
1

2pi

I X1
j¼0

1

j!

n0

z

� �j X1
m¼0

1

m!
ðn0z e�StÞ

m dz

¼
Snn0 expð�St � n e�StÞ

en0 � 1

�
X1
m¼0

1

m!ðmþ 1Þ!
ðn0n e�StÞ

m

¼
Snn0 expð�St � n e�StÞ

ðen0 � 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0n e�St

p I1ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n0n e�St

p
Þ

(75)
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where I1ðxÞ is the modified Bessel Function of first kind. This is the
expression derived in Ref. [4]. To find the average threshold
crossing time and the variance we use Eqs. (63) and (64). We find

k1 ¼ �
1

en0 � 1

X1
m¼1

nm
0

m!
Hðm� 1Þ

k2 ¼
1

en0 � 1

X1
m¼1

nm
0

m!
Hðm� 1Þ2 �

Xm�1

j¼1

1

j2

2
4

3
5 (76)

which was derived in Ref. [3]. HðmÞ is the mth Harmonic number
defined as HðmÞ ¼

Pm
j¼11=j ¼ gþ c0ðmþ 1Þ, where the function

c0ðxÞ is the Digamma function [14]. The average threshold
crossing time t and the variance s are then again given by Eq.
(64). The time response function for n0 ¼ 5 and the variance for
different numbers of n0 are shown in Fig. 7.

7.2. Single electron per cluster, attachment

From the attachment transformation property we know that
the time response function for GðzÞ with attachment k is equal to
the time response function for GðzðyÞÞ and threshold n0 ¼ ð1� kÞn

without attachment. For the single electron per cluster we have

GðzÞ ¼
en0=z � 1

en0 � 1
; GðzðyÞÞ ¼

en0k eð1�kÞn0=y � 1

en0 � 1

with rG ¼ 0. This is, however, the same expression where n0 is
replaced by n0ð1� kÞ (up to normalization factors and a vanishing
term 1=ðexpðn0Þ � 1Þ). Since the path of integration in the y-plane
is a circle that contains y ¼ 0 we have to evaluate the residuals in
the same way as above and we have the result. The effect of
attachment for a Poissonian primary electron distribution is equal
to an effective reduction of the average primary electron number
according to neff ¼ ð1� kÞn0 [5]. Note that this feature is only due
to the property of the exponential, so it is uniquely related to the
Poissonian primary electron distribution.

7.3. Exponential cluster size distribution, attachment

The exponential cluster size distribution FðzÞ ¼ ð1� qÞ=ðz� qÞ

gives

GðzÞ ¼

exp n0
1� q

z� q

� �
� 1

en0 � 1
. (77)

This distribution in presence of attachment is equal to GðzðyÞÞ

without attachment, and we have

GðzðyÞÞ ¼

exp n0k
1� q

1� kq

� �
exp n0

1� k

1� kq

1� q0

y� q0

� �
� 1

en0 � 1
with q0 ¼ qð1� kÞ=ð1� kqÞ. From the cluster transformation we
know however that GðzÞ and Gððz� q0Þ=ð1� q0ÞÞ give the same time
response function, so we only need to use the expression

GðzðyÞÞ ¼

exp n0k
1� q

1� kq

� �
exp n0

1� k

1� kq

1

y

� �
� 1

en0 � 1

in absence of attachment, which gives again the time response
function from Eq. (75) just with a different neff ! We conclude: the
time response function for an exponential cluster size distribution
in presence of attachment is equal to the time response function
for a single electron per cluster in absence of attachment with an
average number of efficient clusters equal to
neff ¼ n0ð1� kÞ=ð1� qkÞ.

7.4. Realistic cluster size distributions

For the more realistic 1=n2 or HEED cluster size distributions
we have to evaluate the integrals numerically. For the 1=n2

distribution we have

rðn; tÞ ¼ en0 � 1

en0 � exp n0Li2ðkÞð Þ

1

2p

�

Z p

�p

exp 6n0Li2ðe
�ij=rÞ


 �
=p2 � 1

en0 � 1

ð1� kÞ2

ð1� kreijÞ2

�Sn exp �St � n
ð1� kÞð1� reijÞ

1� kreij e�St

� �
r eij dj

with 1oro1=k. The expression can also be evaluated by
integrating the real part of the integrand from 0 to p and
multiplying the result by 2 (Eqs. (100) and (101)).

For the cluster size distribution from HEED we calculate the
cluster size probability distribution pm up to an electron number
of 500 which defines GðzÞ ¼

P500
m¼0pm=zm. We then evaluate

numerically the expression

rðn; tÞ ¼ r

2p

Z p

�p

Gðr eijÞ

1� Gð1=kÞ

ð1� kÞ2

ð1� kr eijÞ2
Sn

� exp ij� St � n
ð1� kÞð1� r eijÞ

1� kr eij e�St

� �
dj

with 0oro1=k. The results for the two cluster size models for
k ¼ 0 together with the result for a single electron per cluster are
shown in Fig. 8. We see that the 1=n2 and HEED cluster size
distributions result in a wider and more symmetric time response
function as compared to the un-physical models. Fig. 8 also
compares the variance for the different models, and we see that
the realistic HEED cluster distribution results in a larger variance
compared to the single electron model, but it is still smaller than
the one for the naive 1=n2 model. In Fig. 9 we see the comparison
of the three models for attachment k ¼ 0:3 and 0.6, which shows
slightly less difference than the case of no attachment. For an
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Fig. 8. Time response functions for the single electron, 1=n2 and HEED cluster size distributions for n0 ¼ 5 and k ¼ 0. For the realistic models the time response function is

more symmetric. The tail to the right (later times) is due to avalanche fluctuations while the tail to earlier times is due to frequent events of very large primary electron

numbers.

Fig. 9. RPC time resolution versus number of efficient clusters for the three different cluster size distributions for k ¼ 0:3 and k ¼ 0:6. The differences are smaller compared

to the case of no attachment.
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typical number of n0 ¼ 5 and attachment k ¼ 0:2 the realistic
cluster size distribution reduces the time resolution by 10–20%
compared to the single electron clusters.
8. Discussion

Effect of cluster sizes different from one: The inclusion of realistic
cluster size distributions changes the time response function in
two ways. First, the time response function becomes more
symmetric, because the finite probability to have a large number
of primary electrons produces early threshold crossing times, in
contrast to one electron per cluster, where the resulting Poisson
distribution does not allow large variations around the average
number of primary electrons. Second, the time resolution, or more
precisely the variance of the threshold crossing time, is 10–20%
larger due to the larger fluctuation of primary electrons. The
overall dependence of this variance on the number of efficient
clusters is however still not very different from the universal time
resolution curve, which is valid for single electron and exponential
cluster size distributions, as seen in Fig. 10.

Dependence of s on n0: The dependence of the universal time
resolution curve on n0 is discussed in Refs. [3,5]. Using the
approximations from Eqs. (72) and (73) we can put the large n0

behavior into a more accurate form. We split the resolution into
the avalanche fluctuation contribution and the primary ionization
contribution [3]. In case each electron would produce an average
avalanche growing exponentially without fluctuation, the time
resolution would be only due to the fluctuation in the primary
electron number and the associated shift of the average threshold
crossing time tðmÞ. If on the other hand the average threshold
crossing time would not change, the time resolution would only
be due to the avalanche fluctuations sðmÞ weighted by
the different primary electron numbers. If tðmÞ is the average
threshold crossing time for m primary electrons (Eq. (69)) and
s2ðmÞ is the variance of the threshold crossing time for m primary
electrons (Eq. (70)) then t2ðmÞ ¼ t

2
ðmÞ þ s2ðmÞ is the second

moment of the threshold crossing time. If gðmÞ is the probability
to have m electrons in the gas gap, the first and the second
moment of the time response function is

t ¼
X1
m¼1

gðmÞtðmÞ

t2 ¼
X1
m¼1

gðmÞ½t
2
ðmÞ þ s2ðmÞ�

and the variance is s2 ¼ t2 � t
2
¼ s2

1 þ s2
2 where

s2
1 ¼

X1
m¼1

gðmÞsðmÞ2

s2
2 ¼

X1
m¼1

gðmÞt
2
ðmÞ �

X1
m¼1

gðmÞtðmÞ

 !2

.

s1 is due to the avalanche fluctuations and s2 is due to the change
in average threshold crossing time. Using gðmÞ ¼ nm

0 =m!ðexpðn0Þ � 1Þ
the expression becomes equal to the universal time resolution
curve calculated in Section 7.1. Evaluation of s1 and s2 for k ¼ 0 as
a function of n0 we arrive at the curves shown in Fig. 11. For small
numbers of n0 we always have one electron and therefore s2

1 ¼

p2=6 and s2
2 ¼ 0. For increasing numbers of n0 the change in

threshold crossing time s2 starts to play a role an becomes
comparable to s1 [5]. This can be quantified in more detail. For
large numbers of n0, both components become equal to 1=

ffiffiffiffiffi
n0
p

,
which is quite remarkable. For s1 this can be understood by the
fact that the fluctuation of m around n0 becomes negligible and
from Eq. (73) we know that sðmÞ2 ¼ 1=m for large values of m. The
fact that also s2 becomes equal to 1=

ffiffiffiffiffi
n0
p

becomes clear by the
fact that the variance of gðmÞ is sn0

¼
ffiffiffiffiffi
n0
p

and that for large m we
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Fig. 10. The first figure shows the time resolution ratio between the 1=n2 model and the single electron model. The second figure shows the time resolution ratio between

the HEED model and the single electron model.
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Fig. 11. Universal time resolution s as a function of n0 together the components

due to avalanche fluctuations s1 and average threshold crossing time variations
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Fig. 12. RPC time resolution versus threshold n for n0 ¼ 5 and k ¼ 0:2. The plot

shows the ratio between the time resolution for threshold n and the time

resolution for very high threshold where s becomes independent of the threshold.
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have tðmÞ ¼ ln n� ln m. This results in a time variance of

s ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dtðmÞ

dm
jm¼n0

� �2

s2
n0

s
¼

1ffiffiffiffiffi
n0
p . (78)

The fact that s1 and s2 become equal is, therefore, tied to the
assumption of the Poissonian fluctuation of the primary electron
number. The large n0 approximation of the universal time
response function curve is, therefore, given by sðn0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffi
2=n0

p
.

For the more realistic models this will not any more be the case,
but we have learned that for numbers of n04 � 3 the avalanche
fluctuations and primary ionization fluctuations are contribution
in very similar amounts to the RPC time resolution.

Threshold effects: For large numbers of electrons in the gas gap,
the time resolution is independent of the applied threshold. The
question arises whether we can lower the threshold to levels
where the continuous approximation does not apply and time
variance is smaller. Fig. 12 shows the RPC time resolution for very
low thresholds of no100, calculated for the HEED cluster size
distribution for n0 ¼ 5 and k ¼ 0:2 with the exact expression for
Hðz;n; tÞ. We see that already at a threshold of n ¼ 100 electrons
the time resolution has reached the ‘large n’ limit. The induced
charge Q ðtÞ is on average related to the produced charge nðtÞ by

Q ðtÞ ¼
Ew

Vw

1

a� Z
e0nðtÞ (79)

with typical values of Ew=Vw � 100 mm�1 and a� Z � 100 mm�1

the induced charge for n ¼ 100 is only of the order of a single
elementary charge e0, so there is no theoretical possibility to have
a threshold at such a low level. As illustrated in Ref. [2] it is the
very beginning of the avalanche, when only a few multiplications
have taken place, that determines the time resolution, so there is
no possibility to have a threshold low enough to improve the time
resolution.
9. Conclusion

We have derived analytic expressions for the RPC time
response function that allow the inclusion of realistic cluster size
distributions. Analytic expressions for the average threshold
crossing time and the variance are given as well. Using a 1=n2

or more accurate HEED cluster size distribution we find that the
time response function is more symmetric compared to the one
where a single electron per cluster is assumed. The time
resolution is not any more a universal function of an effective
number of clusters neff . The difference to the single electron model
are of the order of 10–20%.

The independence of the RPC time resolution from the applied
threshold is a general feature of the avalanche fluctuations and is
independent of the specific primary electron distribution. At very
low thresholds n the continuous approximation of the avalanche
fluctuations is not appropriate. Using the exact expression for the
avalanche fluctuation we see that only at thresholds of no50
electrons the time resolution improves, and in practice such low
thresholds are unrealistic.

The two contributions to the RPC time resolution, namely the
change in average threshold crossing time for different primary
electron numbers and the actual avalanche fluctuation become
comparable for neff � 3 and become equivalent for larger cluster
numbers.
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Appendix A. Z-Transform

The Z-Transform of a sequence f ðnÞ is defined by

Z½f ðnÞ;n; z� ¼ FðzÞ ¼
X1
n¼0

f ðnÞ

zn
(80)

which converges for jzj4rF and we call rF the radius of
convergence for FðzÞ. The Z-Transform of a two dimensional
sequence f ðm;nÞ is defined by

Fðz1; z2Þ ¼Z½f ðn;mÞ;n; z1;m; z2�

¼
X1
n¼0

X1
m¼0

f ðn;mÞ

zn
1zm

2

. (81)

There are several ways to invert the Z-Transform

f ðnÞ ¼Z�1
½FðzÞ; z;n� (82)

¼
1

2pi

I
FðzÞzn�1 dz (83)

¼
rn

2p

Z p

�p
Fðr eifÞ einf df (84)

¼
1

n!

dnFð1=zÞ

dzn

� �
z¼0

(85)

¼ lim
z!1

zn FðzÞ �
Xn�1

m¼0

f ðmÞ

zm

 !
. (86)

The last formula can be used for iterative inversion. The following
relations hold:

Z
Xn

m¼0

f ðmÞ;n; z

" #
¼

z

z� 1
FðzÞ (87)

Z
Xn

m¼0

gðn�mÞf ðmÞ;n; z

" #
¼ FðzÞGðzÞ (88)

Z½f ðnÞgðnÞ;n; z� ¼
1

2pi

I
FðxÞG

z

x

� �
dx
x

(89)

lim
n!1

f ðnÞ ¼ lim
z!1þ
ðz� 1ÞFðzÞ (90)

X1
n¼0

f ðnÞ ¼ 1 ! lim
z!1

zFðzÞ ¼ 1 (91)

Z½nf ðnÞ;n; z� ¼ �z
dFðzÞ

dz
(92)

Appendix B. Laplace Transform

The Laplace Transform of a continuous function f ðtÞ is given by

FðsÞ ¼L½f ðtÞ; t; s� ¼

Z 1
0

f ðtÞ e�st dt (93)

and the inverse is given by

f ðtÞ ¼L�1
½FðsÞ; s; t� ¼

1

2pi

Z sþi1

s�i1
FðsÞ est ds.

We make use of the following relations:

L

Z t

0
f ðt0Þdt0; t; s

� �
¼

1

s
FðsÞ (94)

lim
n!1

f ðnÞ ¼ lim
s!0

sFðsÞ. (95)
Appendix C. Continuous approximation of discrete series

We want to find a continuous ‘large n’ approximation for a
discrete series f ðnÞ. We first calculate the Z-Transform FðzÞ of f ðnÞ.
In case the difference between f ðnÞ and f ðnþ 1Þ becomes small,
the Laplace Transform of the continuous function f ðnÞ becomes
equal to the Z-Transform when replacing z by es

Z 1
0

f ðnÞ e�sn dn �
X1
n¼0

f ðnÞ e�sn ¼
X1
n¼0

f ðnÞ

zn
.

Since the value of f ðnÞ for n!1 is found by investigation the
limit of the Laplace Transform for s! 0 (Eq. (95)) the continuous
approximation of f ðnÞ for large n is found by expanding FðesÞ for
small s and performing the inverse Laplace Transform of the
expression. As an example we investigate the so called harmonic
numbers

f ðnÞ ¼
Xn

m¼1

1

m

FðzÞ ¼Z½f ðnÞ;n; z� ¼
z

z� 1
ln

z

z� 1
.

Expanding FðesÞ for small s gives

FðesÞ �
1

2
�

ln s

s
�

1

2
ln sþ OðsÞ. (96)

The inverse Laplace Transform of this expression is

¼ gþ ln nþ
1

2n
(97)

which is the well know large n approximation of the harmonic
numbers [15].
Appendix D. Complex integrals

The contour integral 1=2pi
H

FðzÞdz of a complex function
around a closed path is equal to the sum of residuals inside the
contour. The residual at a pole z0 is equal to the coefficient c�1 of
the Laurent series around z ¼ z0. In case FðzÞ has an mth order pole
at z ¼ z0 then the residual can be calculated by

c�1 ¼
1

ðm� 1Þ!
lim
z!z0

dm�1

dzm�1
½ðz� z0Þ

mFðzÞ�. (98)

In case the path of integration is a circle of radius r around the
origin we can write the integral as

1

2pi

I
FðzÞdz ¼

1

2p

Z p

�p
Fðr eifÞr eif df. (99)

In case the function FðzÞ has the property that FðzÞ ¼ FðzÞ this
integral is real and equal to

1

2p

Z p

�p
Fðr eifÞr eif df ¼ Re

1

p

Z p

0
Fðr eifÞr eif df

� �
. (100)

If FðzÞ is the Z-Transform of a real series it has this property

FðzÞ ¼
X an

zn
an 2 R !

FðzÞ ¼
X an

zn ¼
X an

zn
¼ FðzÞ: (101)

Appendix E. Solution of Legler’s avalanche model

Writing Pðx; zÞ ¼ XðxÞZðzÞ we can separate Eq. (23)

X0

X
¼

Z0

Z
ððaþ ZÞz� a� Zz2Þ ¼ l. (102)
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The solutions of the two equations are

XðxÞ ¼ elx; ZðzÞ ¼
z� 1

1� kz

� �l=ða�ZÞ
(103)

and the general solution is, therefore,

Pðx; zÞ ¼

Z
aðlÞ eða�ZÞx

z� 1

1� kz

� �l=ða�ZÞ
dl (104)

with an arbitrary function aðlÞ. The condition to have m electrons
at x ¼ 0 results in the relation

Pð0; zÞ ¼
1

zm
¼

Z
aðlÞ

z� 1

1� kz

� �l=ða�ZÞ
dl (105)

which defines aðlÞ. Denoting the expression ðz� 1Þ=ð1� kzÞ by y,
the relation reads asZ

aðlÞyl=ða�ZÞ dl ¼
1þ ky

1þ y

� �m

(106)

so by inserting the expression in the brackets of Eq. (104) for y we
have the final solution

Pðz; xÞ ¼
Zðz� 1Þ eða�ZÞx � zZþ a
aðz� 1Þ eða�ZÞx � zZþ a

� �m

. (107)
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